

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

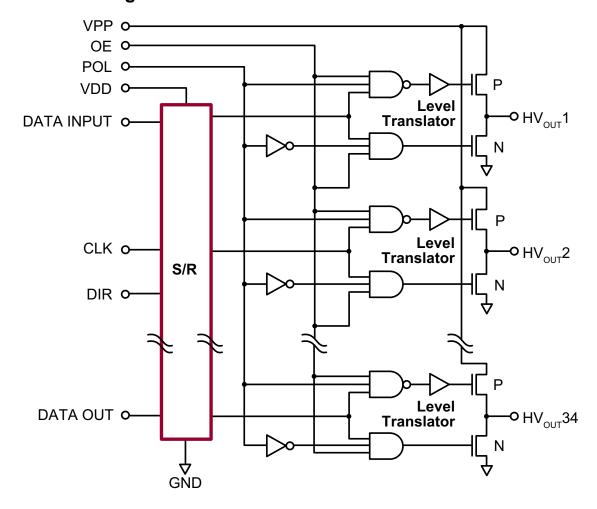
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

34-Channel Symmetric Row Driver


Features

- HVCMOS® technology
- Symmetric row drive (reduces latent imaging in ACTFEL displays)
- Output voltage up to +230V
- Low power level shifting
- Source/sink current minimum 70mA
- Shift register speed 4.0MHz
- ▶ Pin-programmable shift direction

General Description

The HV7022C is a low-voltage serial to high-voltage parallel converter with push-pull outputs. It is especially suited for use as a symmetric row driver in AC thin-film electroluminescent (ACTFEL) displays. The HV7022C offers 34 output lines, a direction (DIR) pin to give CW or CCW shift register loading, output enable (OE), and polarity (POL) control. After data is entered (on the falling edge of CLK), a logic high will cause the output to swing to VPP if POL is high, or to GND if POL is low.

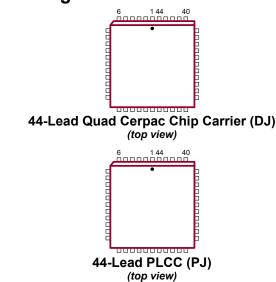
Functional Block Diagram

Ordering Information

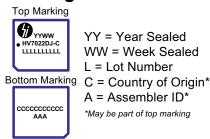
_				_	
		Package	Options		- Inie
	Device	44-Lead Quad Cerpac Chip Carrier .650x.650in body .190in height (max) .050in pitch	44-Lead PLCC .653x.653in body .180in height (max) .050in pitch		Supertex Batts Cumpaliant (Pb)
	HV7022-C	HV7022DJ-C*	HV7022PJ-C-G		VOCATOR

⁻G indicates package is RoHS compliant ('Green')

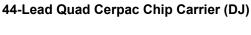
Absolute Maximum Ratings

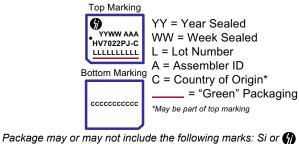

Parameter	Value
Supply voltage, V _{DD}	-0.3V to +15V
Supply voltage, V _{PP}	-0.3V to +250V
Logic input levels	-0.3V to V _{DD} +0.3V
Ground current ¹	1.5A
Continuous total power dissipation ² Plastic Ceramic	1200mW 1500mW
Operating temperature range Plastic Ceramic	-40°C to +85°C -55°C to +125°C
Storage temperature range	-65°C to +150°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.


Notes:

- 1. Duty cycle is limited by the total power dissipated in the package.
- For operation above 25°C ambient derate linearly to maximum operating temperature at 25mW/°C for plastic and at 15mW/°C for ceramic.


Pin Configuration



Product Marking

Package may or may not include the following marks: Si or

44-Lead PLCC (PJ)

^{*} Hi-Rel process flow available.

Recommended Operating Conditions

Sym	Parameter		Min	Max	Units
$V_{_{ m DD}}$	Logic supply voltage		10.8	13.2	V
V _{PP}	High voltage supply		-	230	V
\/	High lovel input voltage	V _{DD} = 10.8	8.1	-	V
V _{IH}	High-level input voltage	V _{DD} = 13.2	9.9	-	V
V	Low lovel input veltage	V _{DD} = 10.8	-	2.7	V
V _{IL}	Low-level input voltage	V _{DD} = 13.2	-	3.3	V
f _{CLK}	Clock frequency		-	4.0	MHz
т		Plastic	-40	+85	00
T _A	Operating free-air temperature	Ceramic	-55	+125	°C
I _{OD}	Allowable pulsed current through or	utput diode	-	±300	mA

Power-up sequence should be the following:

- 1. Connect ground.
- Apply $V_{\rm DD}$. Set all inputs (Data, CLK, Enable, etc.) to a known state.

(The V_{PP} should not drop below V_{DD} or float during operation.)

Power-down sequence should be the reverse of the above.

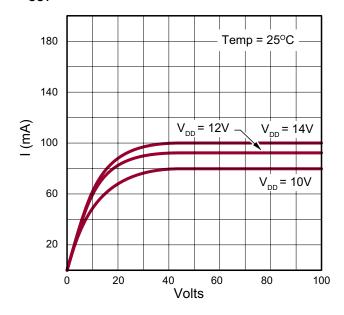
DC Electrical Characteristics (over recommended operating conditions of V_{DD} = 12V, V_{PP} = 230V, and T_A = 25°C unless noted)

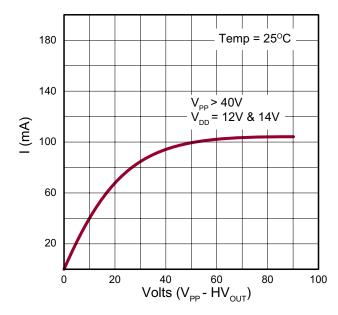
Sym	Parameter		Min	Max	Units	Conditions
I _{DD}	V _{DD} supply current		-	10	mA	$f_{CLK} = 4.0MHz, V_{DD} = 13.2V$
	I _{DD} V _{DD} supply current			4.0	mA	One output high ¹
l _{PP}				100		All outputs low or High-Z
PP	PP 113	-	750	μA	All outputs low or High-Z (125°C)	
I _{DDQ}	Quiescent V _{DD} supply current	-	100	μA	All V_{IN} = GND or V_{DD}	
V	HV _{out}		195	-	V	I _o = -70mA
V _{OH}	High-level output	DATA OUT	11	-	V	I _O = -500μA
\/	Low lovel output	HV_out	-	30	V	I _o = +70mA
V _{OL}	Low-level output DATA OUT			1.0	V	I _O = +500μA
I _{IH}	High-level logic input current		-	1.0	μA	V _{IH} = 12V
I	Low-level logic input current		-	-1.0	μA	V _{IL} = 0V

Note:

The total number of ON outputs times the duty cycle must not exceed the allowable package power dissipation. 1.

AC Electrical Characteristics (V_{DD} = 12V and T_A = 25°C)

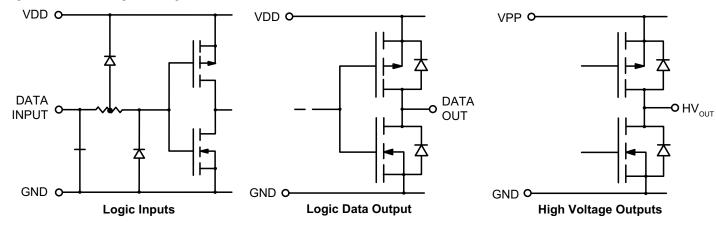

Sym	Parameter	Min	Max	Units	Conditions
f _{CLK}	Clock frequency	-	4.0	MHz	
t_{WH}, t_{WL}	Pulse duration clock width high or low	125	-	ns	
t _{sud}	Data set-up time before falling clock	100	-	ns	
t _{HD}	Data hold time after falling clock	100	-	ns	
t _{suc}	Setup time clock low before $V_{PP} \uparrow$ or $GND \downarrow$	300	-	ns	
t _{sue}	Setup time enable high before $V_{pp} \uparrow$ or $GND \downarrow$	300	-	ns	
t _{sup}	Setup time polarity high or low before $V_{_{PP}}\!\!\uparrow$ or GND \downarrow	300	-	ns	
t _{HC}	Hold time clock high after $V_{PP} \uparrow$ or $GND \downarrow$	500	-	ns	
t _{HE}	Hold time enable high after $V_{PP} \uparrow$ or $GND \downarrow$	300	-	ns	
t _{HP}	Hold time polarity high or low after $V_{pp} \uparrow$ or $GND \downarrow$	300	-	ns	
t _{DHL}	Delay time high to low-level output from clock	-	150	ns	C _L = 10pF
t _{DLH}	Delay time low to high-level output from clock	-	200	ns	C _L = 10pF
t _{THL}	Transition time high to low-level serial output	-	200	ns	C _L = 15pF
t _{TLH}	Transition time low to high-level serial output	-	100	ns	C _L = 15pF
t _{onh}	High-level turn-on time HV _{OUT} from enable	-	500	ns	$V_{OH} = 195V, R_{L} = 2.0k\Omega$ to 95V
t _{onl}	Low-level turn-on time HV _{OUT} from enable	-	500	ns	$V_{OH} = 130V, R_{L} = 2.0k\Omega$ to 30V
t _{OFFH}	High-level turn-off time HV _{OUT} from enable	-	1000	ns	$V_{OH} = 195V, R_{L} = 2.0k\Omega$ to 95V
t _{OFFL}	Low-level turn-off time HV _{OUT} from enable	-	500	ns	$V_{OH} = 130V, R_{L} = 2.0k\Omega$ to 30V
SR	Slew rate, V _{PP} or GND	-	45	V/µs	One active output driving 4.7nF load to V _{PP} or GND

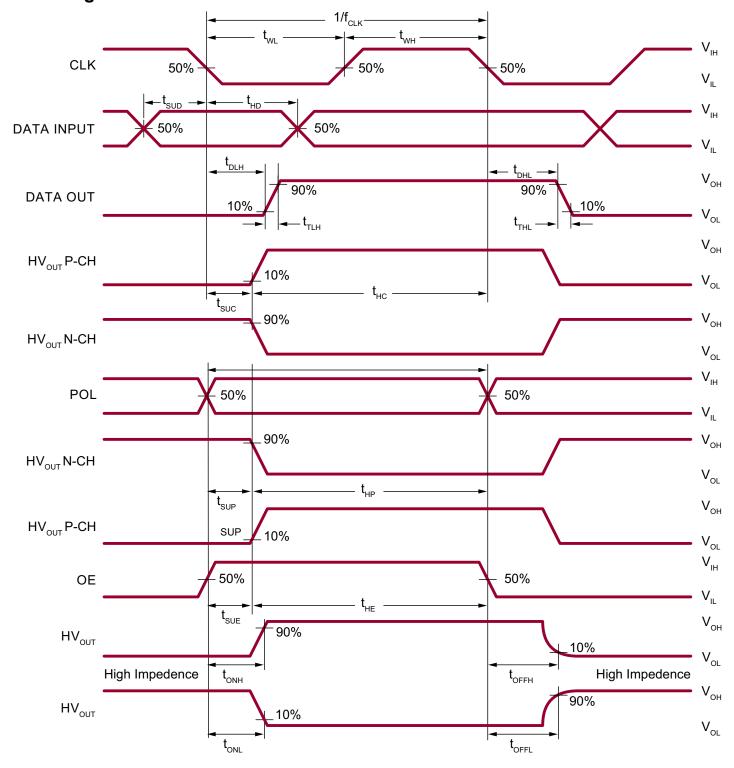

Function Table

I/O Relations			Inputs			Outputs			
I/O Relations	CLK	DIR	DATA	POL	OE	Shift Reg	HV _{out}	DATA OUT	
O/P HIGH	Х	Х	Н	Н	Н	*	Н	*	
O/P OFF	Х	Х	L	Н	Н	*	HIGH-Z	*	
O/P LOW	Х	Х	Н	L	Н	*	L	*	
O/P OFF	Х	Х	L	L	Н	*	HIGH-Z	*	
O/P OFF	Х	Х	Х	Х	L	*	All O/P HIGH-Z	*	
	\	L	Х	Х	Х	$Q_n \rightarrow Q_{n+1}$	*	Q ₃₄	
Load S/R, set DIR	<u></u>	Н	Х	Х	Х	$Q_n \rightarrow Q_{n-1}$	*	Q ₁	
	No ↓	Х	Х	Х	Х	*	No Change	No Change	

 $H = logic \ high \ level, \ L = logic \ low \ level, \ X = irrelevant, \ \downarrow = high-to-low \ transition$ Q1 = HV_{out} 1, Qn = HV_{out} n, etc. * = dependent on previous state and whether an O/P or S/R command occurred.

HV_{OUT} Characteristics




Output N-Channel Characteristics through FET

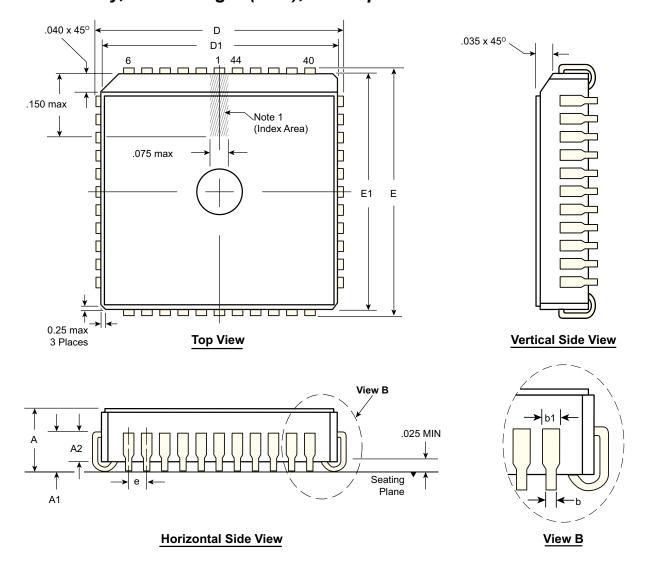
Output P-Channel Characteristics through FET

Input and Output Equivalent Circuits

Switching Waveforms

Pin Descriptions

10113
Function
HV _{ouт} 18/17
HV _{OUT} 17/18
HV _{OUT} 16/19
HV _{OUT} 15/20
HV _{ouT} 14/21
HV _{ouт} 13/22
HV _{ouт} 12/23
HV _{OUT} 11/24
HV _{ouт} 10/25
HV _{оит} 9/26
HV _{out} 8/27
HV _{ουτ} 7/28
HV _{OUT} 6/29
HV _{оυт} 5/30
HV _{оυт} 4/31
HV _{оит} 3/32
HV _{OUT} 2/33
HV _{out} 1/34
DATA OUT
OE
CLK
GND


Pin #	Function
23	DIR
24	VDD
25	POL
26	DATA INPUT
27	VPP
28	NC
29	HV _{ουτ} 34/1
30	HV _{ουτ} 33/2
31	HV _{ουτ} 32/3
32	HV _{ουτ} 31/4
33	HV _{ουτ} 30/5
34	HV _{оυт} 29/6
35	HV _{оυт} 28/7
36	HV _{OUT} 27/8
37	HV _{оυт} 26/9
38	HV _{оит} 25/10
39	HV _{OUT} 24/11
40	HV _{оит} 23/12
41	HV _{оит} 22/13
42	HV _{OUT} 21/14
43	HV _{оит} 20/15
44	HV _{out} 19/16

Note:

Pin designation for DIR H/L Example: For DIR = H, pin 1 is HV_{ουτ}18 For DIR = L, pin 1 is HV_{ουτ}17

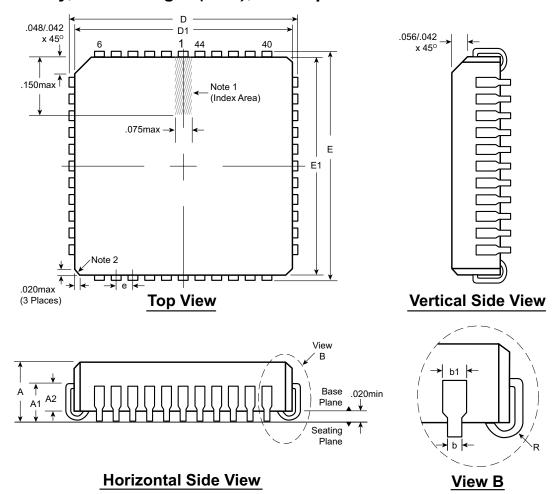
44-Lead Quad Cerpac Package Outline (DJ)

.650x.650in body, .190in height (max), .050in pitch

Note:

 A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symb	ol	Α	A1	A2	b	b1	D	D1	E	E1	е
D	MIN	.155	.090	.060 REF	.017	.026	.685	.630	.685	.630	.050 BSC
Dimension (inches)	NOM	.172	.100		.019	.029	.690	.650	.690	.650	
(inches)	MAX	.190	.120		.021	.032	.695	.665	.695	.665	


JEDEC Registration MO-087, Variation AB, Issue B, August, 1991.

Drawings not to scale.

Supertex Doc. #: DSPD-44CERPACDJ, Version D090808.

44-Lead PLCC Package Outline (PJ)

.653x.653in body, .180in height (max), .050in pitch

Notes:

- A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
- Actual shape of this feature may vary.

Symb	ol	A	A 1	A2	b	b1	D	D1	E	E1	е	R
	MIN	.165	.090	.062	.013	.026	.685	.650	.685	.650		.025
Dimension (inches)	NOM	.172	.105	-	-	-	.690	.653	.690	.653	.050 BSC	.035
(MAX	.180	.120	.083	.021	.036 [†]	.695	.656	.695	.656		.045

JEDEC Registration MS-018, Variation AC, Issue A, June, 1993.

† This dimension differs from the JEDEC drawing.

Drawings not to scale.

Supertex Doc. #: DSPD-44PLCCPJ, Version F031111.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2013 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited.

