imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

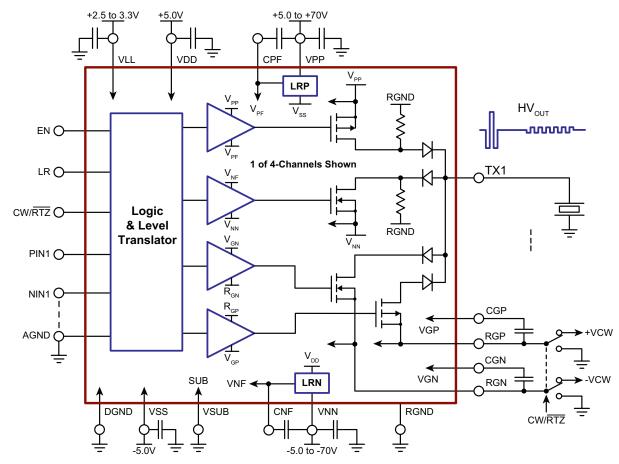
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Four Channel, High Speed ±70V 2.0A Ultrasound RTZ Pulser

Features

- HVCMOS technology for high performance
- High density integrated ultrasound transmitter
- 0 to ±70V output voltage
- ▶ ±2.0A source and sink minimum pulse current
- Up to 20MHz operation frequency
- ±2.5ns matched delay times
- ▶ 2.5 to 5.0V CMOS logic interface
- Built-in output drain diode and bleed resistors
- CW/RTZ Doppler quick switching
- Two damping mode options

Applications


- Portable medical ultrasound imaging
- Piezoelectric transducer drivers
- NDT ultrasound transmission
- Pulse waveform generator

General Description

The Supertex HV7331 is a four-channel, monolithic, high voltage, high speed pulse generator with built in fast return to zero damping FETs. This high voltage and high-speed integrated circuit is designed for portable medical ultrasound imaging devices, and can also be used for NDT applications.

The HV7331 consists of a controller logic interface circuit, level translators, MOSFET gate drives, and high current power P-channel and N-channel MOSFETs as the output stage for each channel.

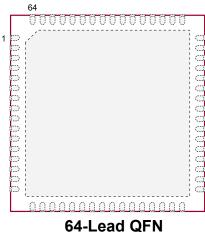
The peak output currents of each channel are guaranteed to be over 2.0A with up to a \pm 70V pulse swing. The integrated regulators for the gate drivers not only saves two floating voltage supplies, but also makes the PCB layout easier. The split common source for the P or N damping MOSFETs provide pulse or CW Doppler mode quick switch-over for cost and power savings.

Typical Application Circuit

Ordering Information / Availability

Part Number	Package Option	Packing				
HV7331K6-G	260/tray					
-G indicates package is RoHS compliant ('Green')						

Absolute Maximum Ratings


Parameter	Value
AGND, DGND and V _{SUB}	0V
V _{LL} , Positive logic supply	-0.5 to +5.5V
$V_{_{DD}}$, Positive logic and level translator supply	-0.5 to +5.5V
V _{ss} , Negative level translator supply	+0.5 to -5.5V
$(V_{PP}-V_{NN})$ Differential high voltage supply	+160V
V _{PP} , High voltage positive supply	-0.5 to +80V
V _{NN} , High voltage negative supply	+0.5 to -80V
All logic input PIN_x , NIN_x , EN and CW voltages	-0.5 to +5.5V
$(V_{PP} - TX_n) V_{PP}$ to TX_n voltage difference	+160V
$(TX_n - V_{NN}) TX_n$ to V_{NN} voltage difference	+160V
(RGP - GND) RGP to GND voltage difference	-0.5 to +5.5V
(RGN - GND) RGN to GND voltage difference	+0.5 to -5.5V
Storage temperature	-65 to 150°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Power-Up Sequence

Step	Description							
1	V_{LL} with logic signal low							
2	V _{DD} , V _{SS}							
3	V _{PP} , V _{NN}							
4	Logic control signals active							

Pin Configuration

(top view)

Package Marking

• HV7331K6	L = Lot Number YY = Year Sealed					
LLLLLLLL	LL WW = Week Sealed					
YYWW	A = Assembler ID					
AAA CCC	C = Country of Origin = "Green" Packaging					

Package may or may not include the following marks: Si or 🎲

64-Lead QFN

Typical Thermal Resistance

Package	$oldsymbol{ heta}_{ja}$
64-Lead QFN	21°C/W

Power-Down Sequence

Step	Description						
1	All logic signals go to low						
2	V _{PP} , V _{NN}						
3	V_{DD}, V_{SS}						
4	V _{LL}						

Note:

Powering up/down in any arbitrary sequence will not cause any damage to the device. The powering up/down sequence is only recommended in order to minimize possible inrush current.

Operating Supply Voltages and Current (Four Active Channels) (Operating conditions, unless otherwise specified, $V_{LL} = +3.3V$, $V_{DD} = +5V$, $V_{SS} = -5V$, $V_{PP} = +70V$, $V_{NN} = -70V$, $V_{SUB} = 0V$, $T_A = 25^{\circ}C$)

Sym	Parameter	Min	Тур	Max	Units	Conditions
V_{LL}	Logic voltage reference	2.25	3.3	5.25	V	
V _{DD}	Positive voltage supply	4.85	5.0	5.15	V	
V _{ss}	Negative voltage supply	-5.15	-5.0	-4.85	V	
V_{RGP}	Positive voltage supply	1.0	-	5.5	V	When CW/ $\overline{\text{RTZ}}$ = 0 (in B-Mode) must be 0 ≤ V _{RGP} ≤ +0.5V and 0 ≥ V _{RGN} ≥ -0.5V
V_{RGN}	Negative voltage supply	-5.5	-	-1.0	V	
V_{PP}	Positive HV supply	VDD	-	+70	V	
V _{NN}	Negative HV supply	-70	-	VSS	V	
I _{LL}	V_{LL} , Current EN = 0	-	1.0	3.0	μA	
I _{DDQ}	V_{DD} , Current EN = 0	-	100	180	μA	
	V _{DD} , Current EN = 1	-	2.5	6.0	mA	f = 0MHz, CW/ RTZ = Low RGN = RGP = 0V
I _{ssq}	V _{ss} Current EN = 0	-	10	20	μA	
I _{SSEN}	V _{ss} Current EN = 1	-	2.0	6.0	mA	
I _{DDCW}	V _{DD} Current EN = CW = 1	-	45	55	mA	
I _{sscw}	V _{ss} Current EN = CW = 1	-	45	55	mA	$f = 5.0MHz$, CW/ $\overline{RTZ} = High$ RGN/RGP = ±5.0V,
I RGPCW	RGP Current EN = CW = 1	-	60	75	mA	No Load
	RGP Current EN = CW = 1	-	35	75	mA	
I _{PPQ}	V _{PP} Current EN = 0	-	32	50	μA	
I _{NNQ}	V _{NN} Current EN = 0	-	32	50	μA]
I _{PPEN}	V _{PP} Current EN = 1	-	290	-	mA	f = 5.0MHz, continuous,
I _{NNEN}	V _{NN} Current EN = 1	-	290	-	mA	no loads
I _{PPEN}	V _{PP} Current EN = 1, LR = 1	-	0.25	0.5	mA	
I _{NNEN}	V _{ss} Current EN = 1, LR = 1	-	0.25	0.5	mA	f - 0MI -
I _{PPEN}	V _{PP} Current EN = 1, LR = 0	-	32	50	μA	f = 0MHz
I _{NNEN}	V_{NN} Current EN = 1, LR = 0	-	32	50	μA	

Logic Inputs

Sym	Parameter	Min	Тур	Max	Units	Conditions
V _{IH}	Input logic high voltage	(V _{LL} - 0.4)	-	V	V	
V _{IL}	Input logic low voltage	0	-	0.4	V	
I _{IH}	Input logic high current	-	-	1.0	μA	
I	Input logic low current	-1.0	-	-	μA	
C _{IN}	Input logic capacitance	-	-	5.0	pF	

Electrical Characteristics

(Operating conditions, unless otherwise specified, $V_{LL} = +3.3V$, $V_{DD} = +5.0V$, $V_{SS} = -5.0V$, $V_{PP} = +70V$, $V_{NN} = -70V$, $V_{SUB} = 0V$, $T_A = 25^{\circ}C$)

Pulser P-Channel MOSFET Sym Parameter Min Тур Max Units Conditions Output saturation current 2.0 3.3 I_{OUT} -А ----I_{SD} = 100mA R_{ON} Channel resistance 4.0 5.5 Ω _ V_{DS} = 25V, f = 1.0MHz Output capacitance 50 pF Coss _ -

Pulser N-Channel MOSFET

Sym	Parameter	Min	Тур	Max	Units	Conditions
I _{OUT}	Output saturation current	2.0	3.3	-	A	
R _{on}	Channel resistance	-	2.3	3.0	Ω	I _{sp} = 100mA
C _{oss}	Output capacitance	-	50	-	pF	V _{DS} = 25V, f = 1.0MHz

MOSFET Drain Bleed Resistor

Sym	Parameter	Min	Тур	Max	Units	Conditions
R _{P/N1~4}	Output bleed resistance	120	-	190	kΩ	
P _{RO}	Bleed resistors power limit	-	-	40	mW	

Damping P-Channel MOSFET

Sym	Parameter	Min	Тур	Max	Units	Conditions
I _{OUT}	Output saturation current	2.0	3.3	-	A	$V_{RGP} = V_{RGN} = 0V$
R _{on}	Channel resistance	-	3.7	4.8	Ω	I _{sp} = 100mA
C _{oss}	Output capacitance	-	50	-	pF	V _{DS} = 25V, f = 1.0MHz

Damping N-Channel MOSFET

Sym	Parameter	Min	Тур	Max	Units	Conditions
I _{OUT}	Output saturation current	2.0	3.3	-	Α	$V_{RGP} = V_{RGN} = 0V$
R _{on}	Channel resistance	-	2.7	3.5	Ω	I _{sp} = 100mA
C _{oss}	Output capacitance	-	50	-	pF	V _{DS} = 25V, f = 1.0MHz

CW Mode P- & N-Channel MOSFET

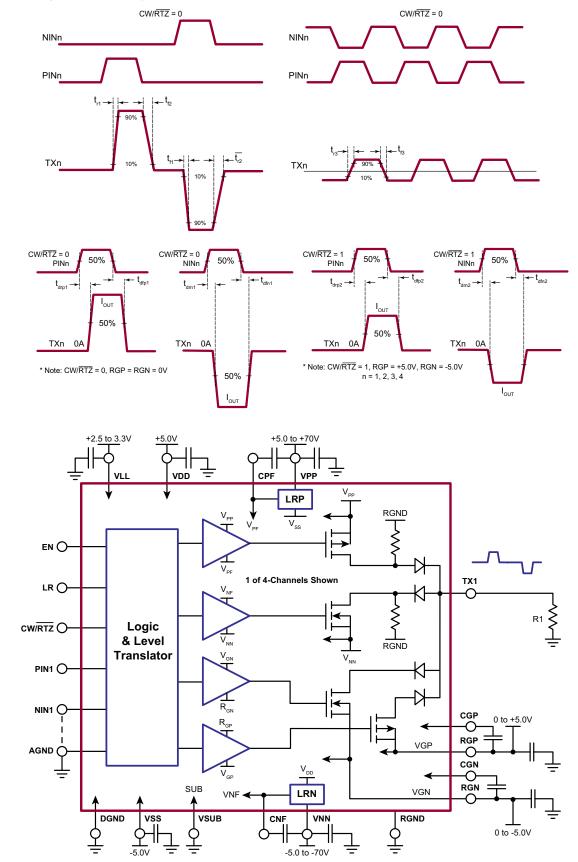
Sym	Parameter	Min	Тур	Max	Units	Conditions
R _{ONCW-P}	CW Mode ON-resistance	-	14	-	Ω	
R _{oncw-n}	CW Mode ON-resistance	-	14	-	Ω	I _{SD} = 100mA, V _{RGP} = +5.0V, V _{RGN} = -5.0V
ΔR_{ONCW}	P- & N-Ch R _{oncw} matching	-	±2.0	-	Ω	RGP - 10.00, RGN - 0.00

AC Electrical Characteristics (Operating conditions, unless otherwise specified, V_{II} = +3.3V, $V_{ADD} = V_{DD}$ = +5.0V, V_{SS} = -5.0V, V_{PP} = +70V, V_{NN} = -70V, T_{4} = 25°C)

(, . _{SS} ,	, , , , , , , , , , , , , , , , , , ,	
Sym	Parameter	Min	Тур	Max	Units	Conditions
t _{r1}	Pulser output rise time	-	15	18	ns	
t _{r1}	Pulser output fall time	-	15	18	ns	220nE//2 EkO lood
t _{r2}	Damping output rise time	-	15	18	ns	330pF//2.5kΩ load
t _{f2}	Damping output fall time	-	15	18	ns	
t _{r3}	CWD output rise time	-	17	22	ns	330pF//2.5kΩ load,
t _{r3}	CWD output fall time	-	17	22	ns	$RGP/RGN = \pm 5.0V$

AC Electrical Characteristics (cont.) (Operating conditions, unless otherwise specified, V_{LL} = +3.3V, $V_{ADD} = V_{DD}$ = +5.0V, V_{SS} = -5.0V, V_{PP} = +70V, V_{NN} = -70V, T_A = 25°C)

Sym	Parameter	Min	Тур	Max	Units	Conditions
f _{out}	Output frequency range	_	-	20	MHz	
HD2	Second harmonic distortion	-	-40	-	dB	100Ω load
t _{en on}	Delay on mode change	-	200	300	μs	
t _{EN_OFF}	Chip disable time	-	2.0	4.0	μs	CPF,
t _{LR ON}	Linear regulators enable time	-	200	300	μs	CNF capacitor 0.47µF per pin, 50% to 90%
t _{LR_OFF}	Linear regulators disable time	-	2.0	4.0	μs	
t _{drp1}	Pulser delay time on P-rise	8.0	-	13	ns	
t _{dfp1}	Pulser delay time on P-fall	5.0	-	10	ns	CW/RTZ = 0
t _{drn1}	Pulser delay time on N-rise	8.0	-	13	ns	$R_1 = R_2 = 1.0\Omega$ to GND
t _{dfn1}	Pulser delay time on N-fall	5.0	-	10	ns	
t _{drp2}	CWD delay time on P-rise	6.0	-	12	ns	
t _{dfp2}	CWD delay time on P-fall	6.0	-	12	ns	CW/RTZ = 1
t _{drn2}	CWD delay time on N-rise	6.0	-	12	ns	$R_1 = R_2 = 1.0\Omega$ to GND
t _{dfn2}	CWD delay time on N-fall	6.0	-	12	ns	
Δt_{DELAY}	Delay time matching	-	±2.5	-	ns	P to N, channel to channel
t _{JCW}	Delay jitter on rise or fall	-	13	-	ps	V_{RGP}/V_{RGN} = ±5.0V, input t _r 50% to HV _{OUT} t _r or t _f 50%, with 50 Ω load


Logic Control Table (each channel)

		Inputs		Output MOSFETs						
Operation Mode	EN	CW/RTZ	PIN	NIN	VPP to TX	VNN to TX	TX to RGP	TX to RGN		
		0	0	0	OFF	OFF	ON	ON		
B-Mode	1	0	1	0	ON	OFF	OFF	OFF		
with RTZ		0	0	1	OFF	ON	OFF	OFF		
		0	1	1	OFF	OFF	OFF	OFF		
		1	0	0	OFF	OFF	OFF	OFF		
CW-Mode	1	1	1	0	OFF	OFF	ON	OFF		
Cvv-wode	'	1	0	1	OFF	OFF	OFF	ON		
		1	1	1	OFF	OFF	OFF	OFF		
Disable	0	X	X	X	OFF	OFF	OFF	OFF		

Note:

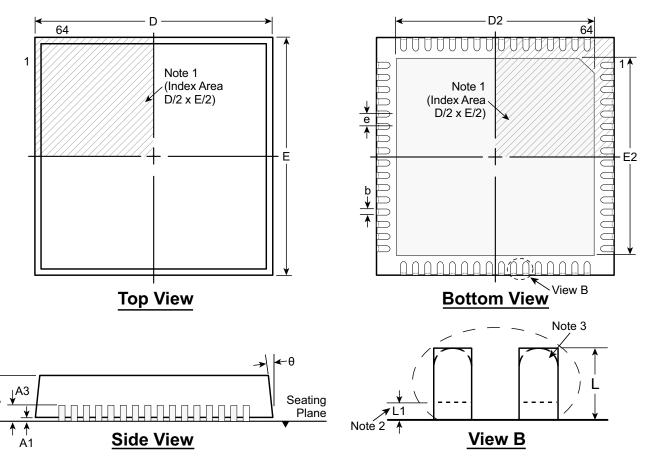
When $CW/\overline{RTZ} = 0$ (in B-Mode) must be $0 \le V_{RGP} \le +0.5V$ and $0 \ge V_{RGN} \ge -0.5V$ When $CW/\overline{RTZ} = 1$ (in CW-Mode) must be $0 \le V_{RGP} \le +5.5V$ and $0 \ge V_{RGN} \ge -5.5V$

Switch Timing and Delay Test

Pin Description

Pin	Name	Description
1	EN	Chip power enable Hi = ON, Low = OFF
2	CW/RTZ	B-Scan or CWD mode control pin, see Control Logic Table
3	NIN1	Input logic control signal for channel 1
4	PIN1	Input logic control signal for channel 1
5	NIN2	Input logic control signal for channel 2
6	PIN2	Input logic control signal for channel 2
7	AGND	Digital logic circuit ground (0V)
8	NIN3	Input logic control signal for channel 3
9	PIN3	Input logic control signal for channel 3
10	NIN4	Input logic control signal for channel 4
11	PIN4	Input logic control signal for channel 4
12	VDD	Positive voltage power supply (+5.0V)
13	LR	Built-in linear regulators power turned on (enabled) when LR = 1 and EN = 1 Built-in linear regulators power turned off (disabled) when EN = 0 or LR = 0
14	VDD	Positive veltage power supply(15.0)()
15	VDD	Positive voltage power supply (+5.0V)
16	VLL	Logic "1" voltage reference input (+2.5 to +5V)
17	AGND	Digital logic circuit ground (0V)
18	VDD	Positive voltage power supply (+5.0V)
19	DGND	Driver and level translator circuit ground return (0V)
20	VSS	Negative voltage power supply (-5.0V)
21	CPF	VPP to VPF decoupling capacitor (low voltage, 0.22 to 0.47 μ F 10V) See Note 1
22	VPP	Positive high voltage power supply (+5.0 to +70V)
23	VPP	Positive high voltage power supply (+5.0 to +70V)
24	CGP	CGP to RGP decoupling capacitor (low voltage, 0.47µF 10V)
25	RGP	Common return ground or positive CW power supply. When $CW/\overline{RTZ} = 0$ (in B-Mode) must
26	RGP	be $0 \le V_{RGP} \le +0.5V$. When CW/ $\overline{RTZ} = 1$ (in CW-Mode) must be $0 \le V_{RGP} \le +5.5V$.
27	CGN	CGN to RGN decoupling capacitor (low voltage, 0.47µF 10V)
28	RGN	Common return ground or positive CW power supply. When CW/RTZ = 0 (in B-Mode) must
29	RGN	be $0 \ge V_{RGN} \ge -0.5V$. When CW/RTZ = 1 (in CW-Mode) must be $0 \ge V_{RGN} \ge -5.5V$.
30	CNF	VNF to VNN decoupling capacitor (low voltage, 0.22 to 0.47 μF 10V) See Note 1
31	VNN	 Negative high voltage power supply (-5.0 to -70V)
32	VNN	
33	TX4	 Transmit pulser output for channel 4
34	TX4	

Pin Description (cont.)


Pin	Name	Description
35	RGND	
36	RGND	Bleeding resistor common return ground
37	TX3	
38	TX3	Transmit pulser output for channel 3
39	RGND	
40	RGND	
41	RGND	Bleeding resistor common return ground
42	RGND	
43	TX2	
44	TX2	Transmit pulser output for channel 2
45	RGND	Disading posister common raturn ground
46	RGND	Bleeding resistor common return ground
47	TX1	Transmit subar outsut for channel 4
48	TX1	Transmit pulser output for channel 1
49	VNN	Negative high veltage power supply $(5.0 \text{ to } 70)/$
50	VNN	 Negative high voltage power supply (-5.0 to -70V)
51	CNF	VNF to VNN decoupling capacitor (low voltage, 0.22 to 0.47 μ F 10V) See Note 1
52	RGN	Common return ground or negative CW power supply. (0V or -1.0 to -5.5V)
53	RGN	Common return ground of negative CVV power supply. (0V of -1.0 to -5.5V)
54	CGN	CGN to RGN decoupling capacitor (low voltage, 2.2µF 10V)
55	RGP	Common return ground or positive CW power supply.(0V or +1.0 to +5.5V)
56	RGP	Common return ground of positive CVV power supply.(0V of +1.0 to +5.5V)
57	CGP	CGP to RGP decoupling capacitor (low voltage, 2.2µF 10V)
58	VPP	 Positive high voltage power supply (+5 to +70V)
59	VPP	Fositive high voltage power supply (+5 to +70v)
60	CPF	CGP to RGP decoupling capacitor (low voltage, 0.22 to 0.47 μF 10V) See Note 1
61	VSS	Negative voltage power supply (-5.0V)
62	DGND	Driver and level translator circuit ground return (0V)
63	VDD	Positive voltage power supply (+5.0V)
64	AGND	Digital logic circuit ground (0V)
(Therma	al Pad) VSUB	Substrate connect to ground (0V)

Note 1:

To minimize the rush-in current, nominal capacitor values for the CPF to VPP pins and the CNF to VNN pins should not exceed 0.47µF.

64-Lead QFN Package Outline (K6)

9.00x9.00mm body, 1.00mm height (max), 0.50mm pitch

Notes:

- 1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
- 2. Depending on the method of manufacturing, a maximum of 0.15mm pullback (L1) may be present.
- 3. The inner tip of the lead may be either rounded or square.

Symbol		Α	A1	A3	b	D	D2	E	E2	е	L	L1	θ
Dimension (mm)	MIN	0.80	0.00	0.20 REF	0.18	8.85*	6.00	8.85*	6.00	0.50 BSC	0.30	0.00	0 0
	NOM	0.90	0.02		0.25	9.00	7.70*	9.00	7.70*		0.40	-	-
	MAX	1.00	0.05		0.30	9.15*	7.80†	9.15*	7.80†		0.50	0.15	14 ⁰

JEDEC Registration MO-220, Variation VMMD-4, Issue K, June 2006.

* This dimension is not specified in the JEDEC drawing.

† This dimension differs from the JEDEC drawing.

Drawings are not to scale.

Supertex Doc.#: DSPD-64QFNK69X9P050, Version B020112

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>http://www.supertex.com/packaging.html</u>.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2013 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.

