imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

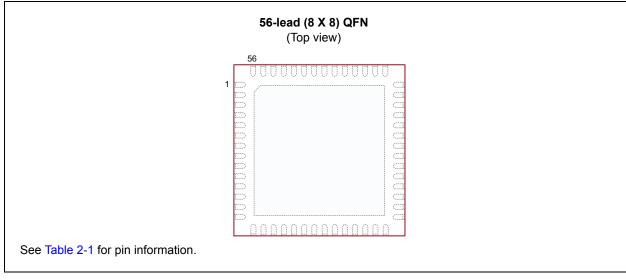
8-Channel High-Speed ±60V ±1A Ultrasound RTZ Pulser

Features

- HVCMOS[®] Technology for High Performance
- High-density Integrated Ultrasound Transmitter
- 0V to ±60V Output Voltage
- ±1A Source and Sink Current in Pulse Mode
- ±1A Source and Sink Current in Return-to-Zero (RTZ) Mode
- Up to 20 MHz Operating Frequency
- · Matched Delay Times
- Optional Clock Realignment
- 3.3V CMOS Logic Interface and Reference
- +3.3V Low-voltage Supply for V_{DD}
- Built-in Linear Regulators for Floating Gate
 Drivers
- · Built-in Output Drain Diodes and Bleed Resistors

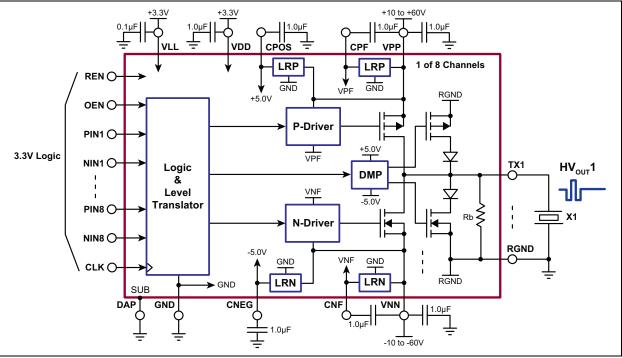
Applications

- Portable Medical Ultrasound Imaging
- Piezoelectric Transducer Drivers
- Pulse Waveform Generator


General Description

The HV7350 is an 8-channel monolithic high-voltage high-speed pulse generator with built-in fast return to zero-damping FETs. This high-voltage and high-speed integrated circuit is designed for portable medical ultrasound imaging system.

The HV7350 consists of a controller logic interface circuit, level translators, MOSFET gate drives, and high-current power P-channel and N-channel MOSFETs as the output stage for each channel.


The output peak currents of each channel are guaranteed to be over $\pm 1A$ with up to $\pm 60V$ pulse swings as well as Return-to-Zero mode. The gate drivers for the output MOSFETs are powered by built-in linear 5V regulators referenced to V_{PP} and V_{NN}. This direct coupling topology of the gate drivers not only saves four floating voltage supplies or AC coupling capacitors per channel but also makes the PCB layout smaller and easier.

An input clock pin is available to realign all the logic input control lines to a master clock. Precise logic timing is always essential in any ultrasound systems.

Package Type

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

GND and Substrate Voltage, VSUB Positive Logic Supply, V _{LL}	0V 0.5V to +5.5V
Positive Logic and Level Translator Supply, V _{DD}	–0.5V to +5.5V
Positive Level Translator Decoupling Pin, CPOS to GND	–0.5V to +5.5V
Negative Level Translator Decoupling Pin, C _{NEG} to GND	+0.5V to5.5V
Positive Floating Gate Driver Decoupling Pin, V _{PP} –C _{PF}	–0.5V to +5.5V
Floating Gate Driver Decoupling Pin, C _{NF} –V _{NN}	–0.5V to +5.5V
Differential High-voltage Supply, V _{PP} -V _{NN}	
High-voltage Positive Supply, V _{PP}	–0.5V to +65V
High-voltage Negative Supply, V _{NN}	+0.5V to –65V
All Logic Input CLK, PIN _X , NIN _X , OEN and REN Voltages	–0.5V to +5.5V
Operating Junction Temperature, T _J	40°C to +125°C
Storage Temperature, T _S	
ESD Rating (Note 1)	ESD Sensitive

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note 1: Devices are ESD sensitive. Handling precautions are recommended.

OPERATING SUPPLY VOLTAGES AND CURRENT (EIGHT ACTIVE CHANNELS)

Electrical Specifications: V_{LL} = +3.3V, V_{DD} = +3.3V, V_{PP} = +60V, V_{NN} = -60V, V_{CLK} = +3.3V, T_A = 25°C unless otherwise indicated.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions	
V _{DD} Voltage Supply	V _{DD}	2.97	3.3	5.2	V		
V _{DD} UVLO	UVLO _{DD}	2.3	2.6	2.8	V		
Logic Voltage Reference	V _{LL}	2.5	3.3	5	V		
V _{LL} UVLO	UVLO _{LL}	1.3	1.55	1.7	V		
Positive High-voltage Supply	V _{PP}	+10	_	+60	V		
Negative High-voltage Supply	V _{NN}	-60	_	-10	V		
V _{LL} Current	I _{LLQ}	_	8	_			
V _{DD} Current	I _{DDQ}	—	1	-		OEN = REN = 0	
V _{PP} Current	I _{PPQ}	—	5	10	μA		
V _{NN} Current	I _{NNQ}	—	5	10			
V _{LL} Current	I _{LLEN}	_	13	20			
V _{DD} Current	I _{DDEN}	_	480	700		OEN = REN = 1	
V _{PP} Current	I _{PPEN}	—	220	350	μA	5 ms after f = 0 MHz	
V _{NN} Current	I _{NNEN}	_	300	400			
V _{DD} Current	IDDCW	—	2.3				
V _{PP} Current	I _{PPCW}	_	80		mA	f = 5 MHz, continuous, no loads, for calculation reference only	
V _{NN} Current	I _{NNCW}	_	80	_			
VLL Current	I _{LL,CLK}	_	33	_	μA	f _{CLK} = 10 MHz, PIN = NIN = 0	

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: V_{LL} = +3.3V, V_{DD} = +3.3V, V_{PP} = +60V, V_{NN} = -60V, V_{CLK} = +3.3V, T_A = 25°C unless otherwise indicated.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
PULSER P-CHANNEL MOSFE	-					
Output Saturation Current	I _{OUT}	1	1.5	_	Α	
Channel Resistance	R _{ON}		13.2	_	Ω	I _{SD} = 100 mA
PULSER P-CHANNEL MOSFE			I		L	00
Output Saturation Current	I _{OUT}	1	1.5	_	Α	
Channel Resistance	R _{ON}	_	8	_	Ω	I _{SD} = 100 mA
DAMPING P-CHANNEL MOSF						
Output Saturation Current	I _{OUT}	1	1.5	—	Α	
Channel Resistance	R _{ON}	_	13	—	Ω	I _{SD} = 100 mA
DAMPING N-CHANNEL MOSF						•
Output Saturation Current	I _{OUT}	1	1.5	—	Α	
Channel Resistance	R _{ON}		9	—	Ω	I _{SD} = 100 mA
LOGIC INPUT						
Input Logic High Voltage	V _{IH}	0.7 • V _{LL}		V _{LL}	V	V _{LL} = 2.5V to 3.3V
input Logic Flight Voltage	▼IH	0.8 • V _{LL}	—		v	V _{LL} = 5V
Input Logic Low Voltage	V _{IL}	0		0.3 • V _{LL}	v	V _{LL} = 2.5V to 3.3V
	• 112	, 	—	0.2 • V _{LL}	•	V _{LL} = 5V
Input Logic High Current	I _{IH}	_	—	10	μA	
Input Logic Low Current	IIL	–10	—		μA	
Input Logic Capacitance	C _{IN}	—	—	5	pF	
MOSFET DRAIN BLEED RESIS	STOR					
Output Bleed Resistance	R _{B1~8}	12	17	25	kΩ	
Bleed Resistors Power Limit	P _{RB1~8}	—	—	50	mW	

AC ELECTRICAL CHARACTERISTICS

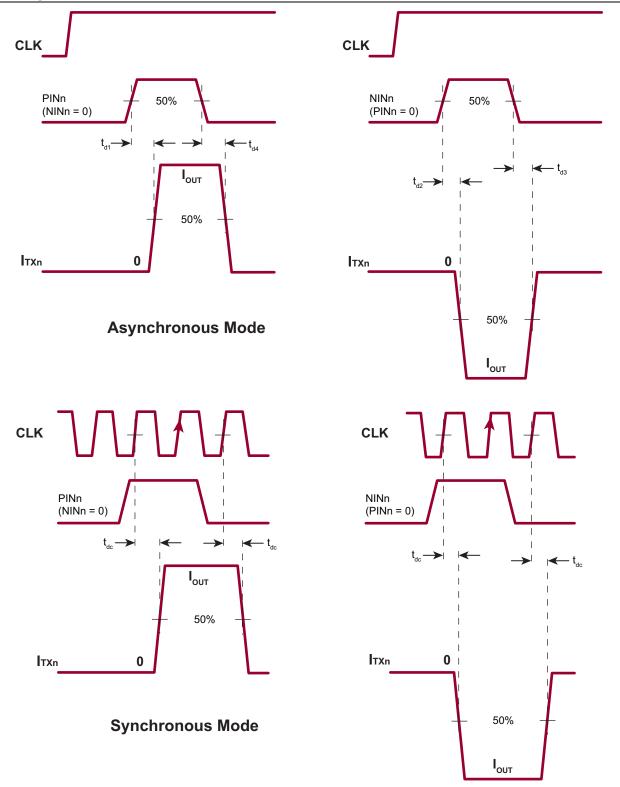
Electrical Specifications: V_{LL} = +3.3V, V_{DD} = +3.3V, V_{PP} = +60V, V_{NN} = -60V, V_{CLK} = +3.3V, T_A = 25°C unless otherwise indicated.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Output Rise Time	t _r	_	30	_	ns	330 pF//2.5 kΩ load
Output Fall Time	t _f		30	_	ns	10%-90%
Enable Time	t _{EN}		300	500	μs	Cap value (See Typical Application
Disable Time	t _{DIS}		2.8	10	μs	Circuit.), OEN = REN
Delay Time on PIN _X Rise	t _{d1}		12	_		
Delay Time on NIN _X Rise	t _{d2}		12	_		1 Ω resistor load, D% < 1%
Delay Time on Damping Rise	t _{d3}		12	_	ns	(See Timing Waveforms.)
Delay Time on Damping Fall	t _{d4}		12	_		50% inputs to 50% T _X current
Delay Time on CLK Rise	t _{dc}		9	_		
Delay Time Matching	Δt_{DELAY}		±3	_	ns	P to N, channel to channel
Delay Jitter on Rise or Fall	tj	_	30	_	ps	V_{PP}/V_{NN} = +/–25V, input t _r 50% to HV _{OUT} t _r or t _f 50%, with 330 pF//2.5 k Ω load
RTZ FETs Drain Diode t _{rr}	t _{rr}	—	25		ns	I _F = 1A, I _R = 1A, R _L = 10Ω

AC ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: V_{LL} = +3.3V, V_{DD} = +3.3V, V_{PP} = +60V, V_{NN} = -60V, V_{CLK} = +3.3V, T_A = 25°C unless otherwise indicated.

otherwise indicated.									
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions			
Retiming Clock Frequency	f _{CLK}	10	220	—	MHz				
Retiming Clock Rise and Fall Times	t _{rc} , t _{fc}	_	0.5	5	ns				
Set-up Time, PIN/NIN to CLK	t _{SU}	2	_	_	ns				
Hold time, CLK to PIN/NIN	t _H	1	_	—	ns				
Clock Time Low	t _{CLK_LO}	2	_	100	ns	CLK input must have at least one pulse			
Clock Time High	t _{CLK_HI}	2	_	100	ns	before PIN and NIN inputs are not zero.			
Clock Recognition Time	t _{CLK_REC}	_	2	_	ns	Be sure to return inputs to zero before			
Clock Release Time	t _{CLK_RLS}	150	300	800	ns	stopping clock.			
Output Frequency Range	f _{оит}	_		20	MHz	100Ω resistor load			
Second Harmonic Distortion	HD2	—	-40		dB				
Output Capacitance	C _{OSS}	_	50		pF	V_{DS} = 25V, f = 1 MHz of T _X pin total			


TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions			
TEMPERATURE RANGE									
Operating Junction Temperature	TJ	-40	—	+125	°C				
Storage Temperature	Τ _S	-65	—	+150	°C				
PACKAGE THERMAL RESISTANCE									
56-lead (8 X 8) QFN	θ_{JA}		21	—	°C/W				

LOGIC CONTROL TABLE

MODE		LOGIC	INPUTS	TX _N , OUTPUT			
MODE	OEN	CLK	PINX	NINX	VPP	VNN	RGND
	1	VLL	0	0	OFF	OFF	ON
Asynchronous Mode	1	VLL	1	0	ON	OFF	OFF
Output Change on PIN/NIN	1	VLL	0	1	OFF	ON	OFF
	1	VLL	1	1	OFF	OFF	OFF
Synchronous Mode	1		0	0	OFF	OFF	ON
Output Change at Retim-	1	Г	1	0	ON	OFF	OFF
ing Clock (CLK) Rising	1		0	1	OFF	ON	OFF
Edge, registered by PIN/NIN	1	Г	1	1	OFF	OFF	OFF
Disabled	0	Х	Х	Х	OFF	OFF	OFF

Timing Waveforms

2.0 PAD DESCRIPTION

Table 2-1 details the description of pads in HV7350.Refer to Package Type for the location of pins.

TABLE 2-1:	PAD FUNCTION TABLE
------------	--------------------

Pin Number	Pin Name	Description
1	PIN2	Input logic control of high-voltage output P-FET for Channel 2; High = on; Low = off (See Logic Control Table.)
2	NIN2	Input logic control of high-voltage output N-FET for Channel 2; High = on; Low = off (See Logic Control Table.)
3	PIN3	Input logic control of high-voltage output P-FET for Channel 3; High = on; Low = off (See Logic Control Table.)
4	NIN3	Input logic control of high-voltage output N-FET for Channel 3; High = on; Low = off (See Logic Control Table.)
5	PIN4	Input logic control of high-voltage output P-FET for Channel 4; High = on; Low = off (See Logic Control Table.)
6	NIN4	Input logic control of high-voltage output N-FET for Channel 4; High = on; Low = off (See Logic Control Table.)
7	OEN	Output enable; High = on; Low = off (See Logic Control Table.)
8	REN	Built-in positive and negative 5V voltage regulators enable; High = on; Low = off If REN = 0, four isolated 5V power supplies may provide, as external supplies, for the VPP to CPF, CNF to VNN, CPOS to GND and GND to CNEG pins. Note that between VPP to CPF and CNF to VNN, two must be floating supplies. (See Logic Control Table.)
9	PIN5	Input logic control of high-voltage output P-FET for Channel 5; High = on; Low = off (See Logic Control Table.)
10	NIN5	Input logic control of high-voltage output N-FET for Channel 5; High = on; Low = off (See Logic Control Table.)
11	PIN6	Input logic control of high-voltage output P-FET for Channel 6; High = on; Low = off (See Logic Control Table.)
12	NIN6	Input logic control of high-voltage output N-FET for Channel 6; High = on; Low = off (See Logic Control Table.)
13	PIN7	Input logic control of high-voltage output P-FET for Channel 7; High = on; Low = off (See Logic Control Table.)
14	NIN7	Input logic control of high-voltage output N-FET for Channel 7; High = on; Low = off (See Logic Control Table.)
15	PIN8	Input logic control of high-voltage output P-FET for Channel 8; High = on; Low = off (See Logic Control Table.)
16	NIN8	Input logic control of high-voltage output N-FET for Channel 8; High = on; Low = off (See Logic Control Table.)
17	VLL	Logic supply voltage and reference input (+3.3V)
18	GND	Logic and circuit return ground (0V)
19	VDD	Positive voltage power supply (+3.3V)
20	VPP	
21	VPP	Positive high-voltage power supply (+10V to +60V)
22	VPP	
23	CPF	Built-in linear voltage VPF regulator output decoupling capacitor pin, 1 uF from VPP to CPF for every CPF pin
24	CNF	Built-in linear voltage VNF regulator output decoupling capacitor pin, 1 uF from CNF to VNN for every CNF pin
25	VNN	
26	VNN	Negative high-voltage power supply (-10V to -60V)
27	VNN	
28	TX8	T _X pulser Channel 8 output
29	RGND	Damping ground and bleed resistors common return ground

Pin Number	Pin Name	Description					
30	TX7	T _X pulser Channel 7 output					
31	RGND	Damping ground and bleed resistors common return ground					
32	TX6	T _X pulser Channel 6 output					
33	RGND	Damping ground and bleed resistors common return ground					
34	TX5	T _X pulser Channel 5 output					
35	CNEG	Built-in linear voltage –5V regulator output decoupling capacitor pin, 1 uF from CNEG to GND					
36	CPOS	Built-in linear voltage +5V regulator output decoupling capacitor pin, 1 uF from CPOS to GND					
37	TX4	T _X pulser Channel 4 output					
38	RGND	Damping ground and bleed resistors common return ground					
39	TX3	T _X pulser Channel 3 output					
40	RGND	Damping ground and bleed resistors common return ground					
41	TX2	T _X pulser Channel 2 output					
42	RGND	Damping ground and bleed resistors common return ground					
43	TX1	T _X pulser Channel 1 output					
44	VNN						
45	VNN	legative high-voltage power supply (–10V to –60V)					
46	VNN						
47	CNF	Built-in linear voltage VNF regulator output decoupling capacitor pin, 1 uF from CNF to VNN for every CNF pin					
48	CPF	Built-in linear voltage VPF regulator output decoupling capacitor pin, 1 uF from VPP to CPF for every CPF pin					
49	VPP						
50	VPP	Positive high-voltage power supply (+10V to +60V)					
51	VPP						
52	VDD	Positive voltage power supply (+3.3V)					
53	GND	Logic and circuit return ground (0V)					
54	CLK	Retiming register clock input. Connect to VLL to disable the retiming function.					
55	PIN1	Input logic control of high-voltage output P-FET for Channel 1; High = on; Low = off (See Logic Control Table.)					
56	NIN1	Input logic control of high-voltage output N-FET for Channel 1; High = on; Low = off (See Logic Control Table.)					
VSL (Therma		Substrate bottom is internally connected to the central thermal pad on the bottom of package. It must be connected to GND (0V) externally.					

TABLE 2-1: PAD FUNCTION TABLE (CONTINUED)

3.0 FUNCTIONAL DESCRIPTION

Follow the steps below to power up and power down the HV7350:

POWER-UP AND POWER-DOWN SEQUENCE (Note 1)

	Power-Up	Power-Down			
Step	Description	Step	Description		
1	V _{LL} with logic signal low	1	All logic signals go to low		
2	V _{DD}	2	V _{PP} and V _{NN}		
3	REN = 1 (external supplies on)	3	REN = 0 (external supplies off)		
4	V_{PP} and V_{NN}	4	V _{DD}		
5	Logic control signals active	5	V _{LL}		

Note 1: Powering up or down in any arbitrary sequence will not damage the device. The power-up sequence and power-down sequence are only recommended to minimize possible inrush current.

OUTPUT CURRENT AND R_{ON} (Note 1, Note 4)

I _{SC} ²	R _{onP}	R _{onN}	ا _{DMP} 3	R _{onDP}	R _{onDN}
1.5A	13Ω	6.5Ω	1.5A	13Ω	8Ω

Note 1: $V_{PP}/V_{NN} = +/-60V$; $V_{DD} = +3.3V$; REN = 1

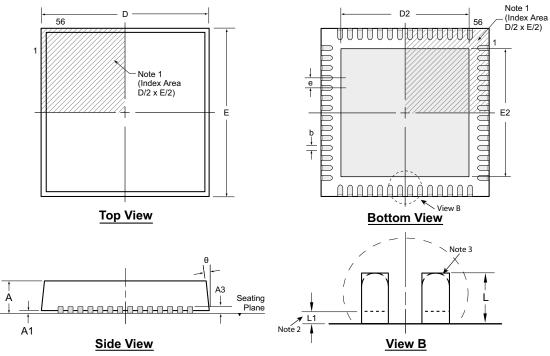
2: I_{SC} is current into 1Ω to GND.

3: I_{DMP} is current from +/–30V connected to T_X pin.

4: Maximum pulse width for current measurement on T_X pin is 20 ns.

4.0 PACKAGING INFORMATION

4.1 Package Marking Information


56-lead QFN Example XXXXXX@ YYWWNNN HV7350K6@ 1621987

Legend	: XXX Y YY WW NNN @3 *	Product Code or Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.						
be carried characters		nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for product code or customer-specific information. Package may or e the corporate logo.						

DS20005627A-page 10

56-Lead QFN Package Outline (K6)

8.00x8.00mm body, 1.00mm height (max), 0.50mm pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Notes:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator. Depending on the method of manufacturing, a maximum of 0.15mm pullback (L1) may be present.

2. З. The inner tip of the lead may be either rounded or square.

Symb	ol	Α	A1	A3	b	D	D2	E	E2	е	L	L1	θ
<u> </u>	MIN	0.80	0.00	0.20 REF	0.18	7.85*	2.75	7.85*	2.75	0.50 BSC	0.30	0.00	0 °
Dimension (mm)	NOM	0.90	0.02		0.25	8.00	5.70	8.00	5.70		0.40	-	-
(((((((((((((((((((((((((((((((((((((((MAX	1.00	0.05		0.30	8.15*	6.70 [†]	8.15*	6.70 [†]		0.50	0.15	14 ⁰

JEDEC Registration MO-220, Variation VLLD-2, Issue K, June 2006. * This dimension is not specified in the JEDEC drawing. † This dimension differs from the JEDEC drawing.

Drawings are not to scale.

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (October 2016)

- Converted Supertex Doc# DSFP-HV7350 to Microchip DS20005627A
- Changed the packaging quantity of 56-lead QFN M937 from 2000/Reel to 3000/Reel
- Made minor text changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	<u>xx</u>	- x - x	Examples:				
Device	Package Options	Environmental Media Type	a) HV7350K6-G:	8-Channel High-Speed ±60V ±1A Ultrasound RTZ Pulser, 56-lead VQFN, 250/Tray			
Device:	HV7350 =	8-Channel High-Speed ±60V ±1A Ultrasound RTZ Pulser	b) HV7350K6-G-M937:	8-Channel High-Speed ±60V ±1A Ultrasound RTZ Pulser, 56-lead VQFN, 3000/Reel			
Package:	K6 =	56-lead VQFN					
Environmental:	G =	Lead (Pb)-free/RoHS-compliant Package					
Media Type:	(blank) =	250/Tray for a K6 Package					
	M937 =	3000/Reel for a K6 Package					

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0997-7

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351

Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

06/23/16