imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

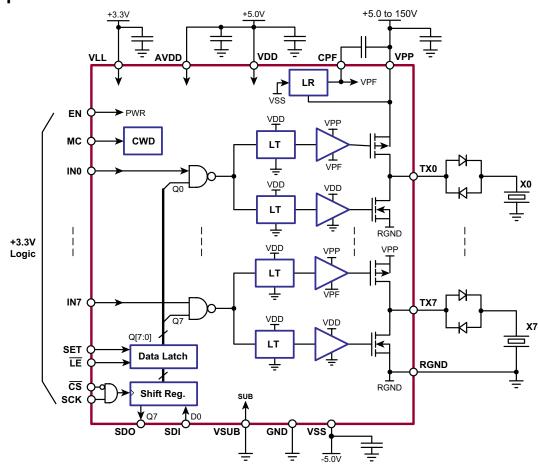
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Eight Channel, High Speed, Unipolar, Ultrasound Pulser 1.5A 150V

Features

- ► HVCMOS technology for high performance
- High density integrated ultrasound transmitter
- 0 to +150V output voltage
- ▶ ±1.5A source and sink current (min.)
- ▶ ±300mA current in CW mode
- Up to 18MHz operating frequency
- Matched delay times
- Built-in gate driver floating voltage regulator
- 2.5 to 3.3V CMOS logic interface

Application


- Portable medical ultrasound imaging
- Piezoelectric transducer drivers
- NDT ultrasound transmission
- Pulse waveform generator

General Description

The Supertex HV7355 is an eight-channel, unipolar, high voltage, high-speed pulse generator. It is designed for medical ultrasound applications. This high voltage and high speed integrated circuit can also be used for other piezoelectric, capacitive or MEMS sensors in ultrasonic nondestructive detection and sonar ranger applications.

The HV7355 consists of a controller logic interface circuit, level translators, MOSFET gate drivers and high current P-channel and N-channel MOSFETs as the output stage for each channel.

The output stages of each channel are designed to provide peak output currents over $\pm 1.5A$ for pulsing, when MC = 1, with up to 150V swings. When MC = 0, all the output stages drop the peak current to ± 500 mA for low-voltage CW mode operation to save power. This direct coupling topology of the gate driver not only saves one high voltage capacitor per channel, but also makes the PCB layout easier.

Typical Application Circuit

Ordering Information

U		
Part Number	Package Options	Packing
HV7355K6-G	56-Lead QFN (8x8)	250/Tray
HV7355K6-G M937	56-Lead QFN (8x8)	2000/Reel

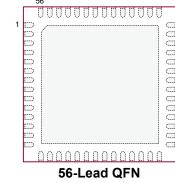
-G denotes a lead (Pb)-free / RoHS compliant package

Absolute Maximum Ratings

Value
0V
-0.5V to +7.0V
-0.5V to +7.0V
+0.5V to -7.0V
-0.5V to +160V
-0.5V to +160V
-0.5V to +160V
-0.5V to +7.0V
-40°C to 125°C
-65°C to 150°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Typical Thermal Resistance


Package	Θ_{ja}		
56-Lead QFN	21°C/W		

Power-Up Sequence

Step	Description						
1	V _{ss}						
2	V _{LL} with logic signal low						
3	V _{DD}						
4	V _{PP}						
5	EN & logic signal go to high						

ESD Sensitive Device

Pin Configuration

(top view)

Package Marking

• HV7355K6	L = Lot Number YY = Year Sealed
LLLLLLLL	WW = Week Sealed
YYWW	A = Assembler ID
AAA CCC	C = Country of Origin
	= "Green" Packaging

Package may or may not include the following marks: Si or 🎲

56-Lead QFN

Power-Down Sequence

Step	Description						
1	EN & logic signal low						
3	V _{PP}						
4	V _{DD}						
5	V _{LL}						
6	V _{ss}						

Note:

Powering up/down in any arbitrary sequence will not cause any damage to the device. The powering up/down sequence is only recommended in order to minimize possible inrush current.

Truth Table (mc = x)

	Output		
EN	Q[7:0]	IN0~7	TX0~7
1	1111,1111	0	GND
1	1111,1111	1	VPP
1	0	Х	GND
0	Х	Х	HiZ

Drive Mode Control Table

МС	I _{sc} (A)	R _{onP}	R _{onN}
0	0.50	18	13
1	1.6	8.0	3.0
Note:			,

 $V_{PP} = +150V, V_{DD} = +5.0 V, V_{LL} = +3.3V, V_{SS} = -5.0V, V_{SUB} = 0V$

Operating Supply Voltages and Current (Eight Active Channels) (Operating conditions, unless otherwise specified, $V_{LL} = +3.3V$, $V_{ADD} = V_{DD} = +5.0V$, $V_{SS} = -5.0V$, $V_{PP} = +150V$, $T_A = 25^{\circ}C$)

Sym	Parameter	Min	Тур	Max	Units	Conditions
V	Logic voltage reference	2.37	3.30	3.47	V	
V _{DD}	Internal voltage supply	4.5	5.0	5.5	V	
V _{PP}	Positive gate driver supply	$V_{_{DD}}$	-	+150	V	
V _{ss}	Negative low voltage supply	-5.5	-5.0	-4.5	V	
V _{PF}	Gate driver floating voltage	-	5.0	-	V	
I _{LL}	V _{LL} Current EN = Low	-	2.0	10	μA	
I _{DDQ}	V _{DD} Current EN = Low	-	50	150	μA	f = 0MHz
I _{DDEN}	V _{DD} Current EN = High	-	1.0	4.0	mA	f = 0MHz
I _{DDEN}	V _{DD} Current MC = High	-	160	-	mA	f = 5.0MHz, continuous
	V _{DD} Current MC = Low	-	12	-	mA	no loads
I _{SSQ}	V _{ss} Current EN = Low	-	5.0	20	μA	
I _{SSEN}	V _{ss} Current EN = High	-	1.0	4.0	mA	f = 0MHz
I _{SSEN}	V _{ss} Current MC = High	-	95	-	mA	f = 5.0MHz, continuous
	V _{ss} Current MC = Low	-	50	-	mA	no loads
I _{PPQ}	V _{PP} Current EN = Low	-	2.0	10	μA	
I _{PPEN}	$V_{_{PP}}$ Current EN = High	-	200	450	μA	f = 0MHz
I _{PPEN}	V _{PP} Current MC = High	-	370	-	mA	f = 5.0MHz, continuous
	V _{PP} Current MC = Low	-	300	-	mA	no loads

Under Voltage and Over Temperature Protection

Sym	Parameter	Min	Тур	Max	Units	Conditions
VUVDD	V _{DD} threshold	3.4	-	4.4	V	(Internal only)
V _{UVLL}	V _{LL} threshold	-	1.7	-	V	(Internal only)
VUVPF	V_{PP} - V_{PF} threshold	2.5	-	3.8	V	(Internal only)

Logic Inputs (Operating conditions, unless otherwise specified, $V_{LL} = +3.3V$, $V_{ADD} = V_{DD} = +5.0V$, $V_{SS} = -5.0V$, $V_{PP} = +150V$, $T_A = 25^{\circ}C$)

Sym	Parameter	Min	Тур	Max	Units	Conditions
V _{IH}	Input logic high voltage	(V _{LL} - 0.4)	-	V	V	
V _{IL}	Input logic low voltage	0	-	0.4	V	
I _{IH}	Input logic high current	-	-	1.0	μA	
I	Input logic low current	-1.0	-	-	μA	
C	Input logic capacitance	-	-	5.0	pF	

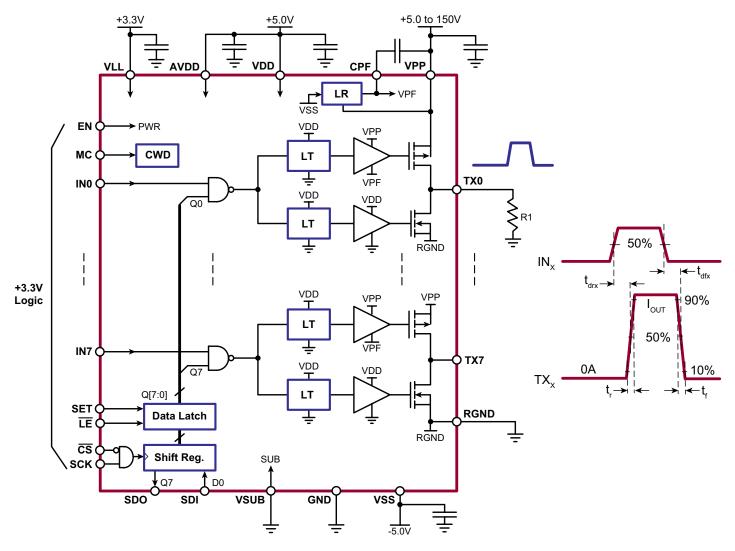
Electrical Characteristics

(Operating conditions, unless otherwise specified, $V_{LL} = +3.3V$, $V_{ADD} = V_{DD} = +5.0V$, $V_{ss} = -5.0V$, $V_{PP} = +150V$, $T_A = 25^{\circ}C$) **P-Channel MOSFET Output, TX0~7**

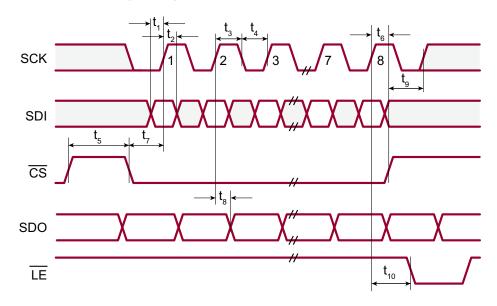
Sym	Parameter	Min	Тур	Max	Units	Conditions
I _{OUT}	Output saturation current	1.4	1.6	-	A	MC = 1
R _{on}	Channel resistance	-	8.0	-	Ω	100mA
I _{OUT}	Output saturation current	0.5	-	-	Α	MC = 0
R _{on}	Channel resistance	-	18	-	Ω	100mA

N-Channel MOSFET Output, TX0~7

Sym	Parameter	Min	Тур	Max	Units	Conditions
I _{OUT}	Output saturation current	1.5	1.7	-	Α	MC = 1
R _{on}	Channel resistance	-	3.0	-	Ω	I _{sp} = 100mA
I _{OUT}	Output saturation current	0.5	-	-	Α	MC = 0
R _{on}	Channel resistance	-	22	-	Ω	100mA


AC Electrical Characteristics (Operating conditions, unless otherwise specified, V_{LL} = +3.3V, V_{ADD} = V_{DD} = +5.0V, V_{SS} = -5.0V, V_{PP} = +150V, T_A = 25°C)

Sym	Parameter	Min	Тур	Max	Units	Conditions
t _{inrf}	Input data rise/fall max time	-	-	10	ns	
t,	Output rise time	-	24	-	ns	330pF//2.5kΩ load
t _r	Output fall time	-	24	-	ns	see timing test diagram
f _{out}	Output frequency range	-	-	18	MHz	100Ω resistor load, V_{PP} = +90V
t _{en-on}	Initial enable time	-	150	200	μs	$2\mu F$ on each CPF pin to 90% of V _{CPF}
t _{EN-OFF}	Output disable time	-	2.0	5.0	μs	at 5.0MHz CW
t _{dr}	Delay time on inputs rise	-	5.0	-	ns	V _{PP} = 25V
t _{df}	Delay time on inputs fall	-	5.0	-	ns	1.0Ω resistor load, 50% to 50%
t _{dm}	Delay on mode change	-	50	70	ns	see timing test diagram
Δt_{DELAY}	Delay time matching	-	± 2.0	-	ns	P to N, channel to channel
t	Delay jitter on rise or fall	-	15	-	ps	


Serial Data Interface Timing Characteristics (Operating conditions, unless otherwise specified, $V_{LL} = +3.3V$, $V_{ADD} = V_{DD} = +5.0V$, $V_{SS} = -5.0V$, $V_{PP} = +150V$, $T_A = 25^{\circ}C$)

Sym	Parameter	Min	Тур	Max	Units	Conditions		
f _{scк}	Serial clock max. frequency	25	-	-	MHz			
t,	SDI valid to SCK setup time	0	2.0	-	ns			
t ₂	SDI valid to SCK hold time	4.0	-	-	ns			
t ₃	SCK high time	9.0	-	-	ns	All from/to 50% rise or fall edges		
t ₄	SCK low time	9.0	-	-	ns	(See timing diagram)		
t ₅	CS pulse width	9.0	-	-	ns			
t ₆	SCK high to \overline{CS} high	7.0	-	-	ns			
t ₇	$\overline{\text{CS}}$ low to SCK high	7.0	-	-	ns			
t _s	SDO delay from SCK rise edge	-	6.5	-	ns	SDO with 100pF to GND		
t ₉	$\overline{\text{CS}}$ high to SCK rise edge	7.0	-	-	ns	All from/to 50% rise or fall edges		
t ₁₀	SCK high to $\overline{\text{LE}}$ low	7.0	-	-	ns	(See timing diagram)		

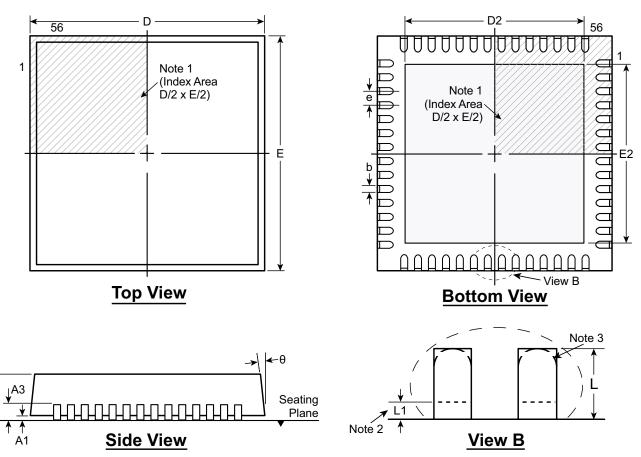
Output Timing Test Diagram

Serial Data Interface Timing Diagram

Supertex inc. www.supertex.com

Pin Description

Pin	Name	Description									
1	IN0										
2	IN1										
3	IN2										
4	IN3										
5	IN4	Input control for channels 0~7									
6	IN5										
7	IN6										
8	IN7										
9	CS	Serial interface enable, active low									
10	SDI	Serial shift register data input, MSB(D7) first, LSB(D0) last									
11	LE	Latch enable, active low									
12	SCK	Serial shift register clock									
13	SDO	Serial shift register data output									
14	SET	Set latch data Q[7:0] = 1, regardless the shift register inputs or LE, active high									
15	MC	Output current mode control pin, see Drive Mode Control Table									
16	VLL	Logic Hi voltage reference input (+3.3V)									
17	VSS	Negative power supply(-5.0V)									
18	CPF	Gate driver floating voltage decoupling capacitor to $V_{_{PP}}$									
19	VPP										
20	VPP	Desitive high veltage neuron cumply (1450)()									
21	VPP	Positive high voltage power supply (+150V)									
22	VPP										
23	VDD	Positive voltage supply for gate drivers (+5.0V)									
24	RGND										
25	RGND	Output return ground, 0V, RGND pins carry high current, must connect to load transducer									
26	RGND	ground									
27	RGND										


HV7355

Pin Description (cont.)

FIII Des	scription										
Pin	Name	Description									
28	TX7										
29	TX7										
30	TX6										
31	TX6										
32	TX5										
33	TX5										
34	TX4										
35	TX4	Output for abapted 0-7									
36	TX3	Output for channel 0~7									
37	TX3										
38	TX2										
39	TX2										
40	TX1										
41	TX1										
42	TX0										
43	TX0										
44	RGND										
45	RGND	Output return ground, 0V, RGND pins carry high current, must connect to load transducer									
46	RGND	ground									
47	RGND										
48	VDD	Positive voltage supply for gate drivers (+5.0V)									
49	VPP										
50	VPP	Positivo high voltago powor supply (+150)/)									
51	VPP	Positive high voltage power supply (+150V)									
52	VPP										
53	CPF	Gate driver floating voltage decoupling capacitor to $V_{_{\rm PP}}$									
54	GND	Logic input reference ground, 0V									
55	AVDD	Positive internal voltage supply (+5.0V)									
56	EN	Chip power enable, active high									
VSUB (Th	nermal Pad)	Substrate bottom is internally connected to the central thermal pad on the bottom of package. It must be connected to GND (0V) externally									

56-Lead QFN Package Outline (K6)

8.00x8.00mm body, 1.00mm height (max), 0.50mm pitch

Notes:

- 2. Depending on the method of manufacturing, a maximum of 0.15mm pullback (L1) may be present.
- 3. The inner tip of the lead may be either rounded or square.

Symbol		Α	A1	A3	b	D	D2	E	E2	е	L	L1	θ
Dimension (mm)	MIN	0.80	0.00	0.20 REF	0.18	7.85*	2.75	7.85*	2.75	0.50 BSC	0.30	0.00	0 0
	NOM	0.90	0.02		0.25	8.00	5.70	8.00	5.70		0.40	-	-
	MAX	1.00	0.05		0.30	8.15*	6.70 [†]	8.15*	6.70 [†]		0.50	0.15	14 ⁰

JEDEC Registration MO-220, Variation VLLD-2, Issue K, June 2006.

* This dimension is not specified in the JEDEC drawing.

† This dimension differs from the JEDEC drawing.

Drawings are not to scale.

Supertex Doc.#: DSPD-56QFNK68X8P050, Version A031010.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>http://www.supertex.com/packaging.html</u>.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2014 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.

^{1.} A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.