mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

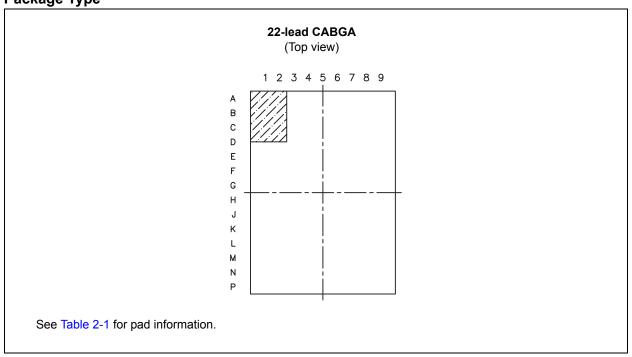
High-Speed ±100V 2.5A Two-or-Three-Level Ultrasound Pulsers

Features

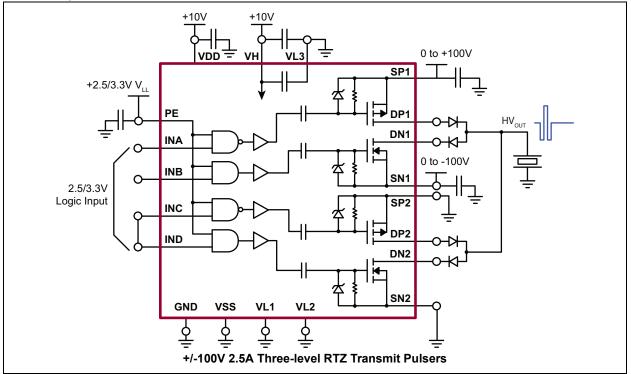
- High Density Integration AC-coupled Pulser
- 0V to ±100V Output Voltage
- ±2.5A Source and Sink Minimum Pulse Current
- Up to 35 MHz Operating Frequency
- 2 ns Matched Delay Times
- 2.5V, 3.3V or 5V CMOS Logic Interface
- Built-in Two-terminal Low-noise Interface for HV7361
- Low Power Consumption and No Floating Power Supply Rails or Decoupling Capacitors

Applications

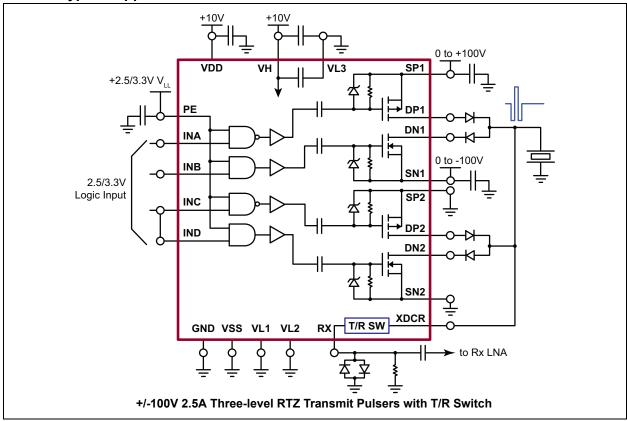
- Medical Ultrasound Imaging
- Piezoelectric Transducer Drivers
- Ultrasound Industrial NDT
- Pulse Waveform Generator


General Description

The HV7360/HV7361 are high-voltage and high-speed pulse generators with built-in, fast return-to-zero damping Field-Effect Transistors (FETs). An added feature to HV7361 is an integrated two-terminal low-noise T/R switch. These integrated circuits are designed not only for portable medical ultrasound image devices but also for NDT and test equipment applications.


Both the HV7360/HV7361 are composed of controller logic interface circuits, level translators and AC-coupled Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) gate drivers. They also have high-voltage and high-current P-channel and N-channel MOSFETs as output stages.

The peak output currents of each channel are guaranteed to be over ± 2.5 A with up to ± 100 V of pulse swing. The AC coupling topology for the gate drivers not only saves two floating voltage supplies but also makes the PCB layout easier.


Package Type

HV7360 Typical Application Circuit

HV7361 Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

$ Chip Power Supply Voltage, V_{DD}-V_{SS} \\ Output High Supply Voltage, V_H \\ Output Low Supply Voltage, V_L \\ Low-side Supply Voltage, V_{SS} \\ Differential High Voltage, V_{SP1}-V_{SN1}, V_{SP2}-V_{SN2} \\ Positive High Voltage, V_{SP1,2} \\ Negative High Voltage, V_{SN1,2} \\ All Logic Input Voltages \\ Rx to XDCR Differential Drop \\ $	$\label{eq:VL-0.5 to V_{DD}+0.5V} \\V_{SS}-0.5V to V_{H}+0.5V \\6V to +0.5V \\6V to +0.5V \\+220V \\0.5V to +110V \\+0.5V to -110V \\V_{SS}-0.5V to GND +5.5V \\±140V \\$
	±140V ±110V ±110V

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

OPERATING SUPPLY VOLTAGES AND CURRENT

Electrical Specifications: GND = 0V, $V_H = V_{DD} = +10V$, $V_L = V_{SS} = 0V$, $V_{PE} = 3.3V$, $V_{PP} = +100V$, $V_{NN} = -100V$, $T_A = 25^{\circ}C$ unless otherwise specified.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Logic Supply Voltage Range	V _{LL}	2.25	—	3.63	V	
Supply Voltage	V _{DD} -V _{SS}	4.75		11.5	V	$4V \le V_{DD} \le 11.5V$
Low Side Supply Voltage	V _{SS}	-5.5		0	V	
Gate Drive High-side Voltage	V _H	V _{SS} +4	—	V _{DD}	V	
Gate Drive Low-side Voltage	VL	V _{SS}	—	V _{DD} –4	V	$V_{H} - V_{L} \ge 4V$
Output Positive High Voltage	V _{SP1,2}	0	—	100	V	
Output Negative High Voltage	V _{SN1,2}	-100	—	0	V	
V _{DD} Quiescent Current	I _{DDQ}		50	_	μA	No input transitions, PE = 0
V _H Quiescent Current	I _{HQ}	_	2	_	μA	
V _{DD} Quiescent Current	I _{DDQ}	_	1	—	mA	No input transitions, PE = 1
V _H Quiescent Current	I _{HQ}		2		μA	
V _{DD} Average Current	I _{DD}	_	4	_	mA	One channel on at 5 MHz, no
V _H Average Current	Ι _Η		10		mA	load
Input Logic Voltage High	V _{IH}	V _{PE} 0.3	—	V_{PE}	V	
Input Logic Voltage Low	V _{IL}	0		0.3	V	For logic inputs INA, INB, INC
Input Logic Current High	I _{IH}		—	1	μA	and IND
Input Logic Current Low	۱ _{IL}		—	1	μA	
PE Input Logic Voltage High	V _{PEH}	1.7	3.3	5.25	V	
PE Input Logic Voltage Low	V _{PEL}	0	—	0.3	V	For logic input PE
PE Input Impedance to GND	R _{INPE}	100	_	_	kΩ	

AC ELECTRICAL CHARACTERISTICS

Electrical Specifications: GND = 0V, $V_H = V_{DD} = +10V$, $V_L = V_{SS} = 0V$, $V_{PE} = 3.3V$, $V_{PP} = +100V$, $V_{NN} = -100V$, $T_A = 25^{\circ}C$ unless otherwise specified.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions			
Input or PE Rise and Fall Time	t _{irf}	—	—	10	ns	Logic input edge speed requirement			
Input to Output Delay	t _{d1-4}	—	7.5	—	ns	$R_{LOAD} = 1\Omega$			
Output Rise and Fall Time	t _{r/f1-2}	—	9.5	_	ns	C_{LOAD} = 330 pF, R_{LOAD} = 2.5 k Ω			
Rise and Fall Time Matching	∆t _{rf}	—	2	_	ns	Channel to channel			
Propagation Matching	∆t _{dC2C}		1	_	115				
Propagation Delay Matching	Δt_{dD2D}	—	±2	_	ns	Device to device delay match			
PE On-time	t _{PE-ON}		_	5		V _{PE} = 1.7 ~ 5.25V,			
PE Off-time	t _{PE-OFF}	_	_	4	μs	V _{DD} = 7.5 ~ 11.5V, -20 ~ 85°C			
Output to MOSFET Gate Cap	C _{OG}	—	10	—	nF	100V X7S			
V_H to V_{L3} Decoupling Cap	C _{VH}	—	0.22		μF	16V X7R			

ELECTRICAL CHARACTERISTICS

Electrical Specifications: GND = 0V, $V_H = V_{DD} = +10V$, $V_L = V_{SS} = 0V$, $V_{PE} = 3.3V$, $V_{PP} = +100V$, $V_{NN} = -100V$, $T_A = 25^{\circ}C$ unless otherwise specified.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions					
PULSER AND DAMPING P-CHANNEL MOSFET											
DC PARAMETER											
Drain-to-source Breakdown Voltage	BV _{DSS}	-200	—		V	$V_{GS} = 0V, I_{D} = -2 \text{ mA}$					
Gate Threshold Voltage	V _{GS(th)}	-1	_	-2.4	V	$V_{GS} = V_{DS}, I_D = -1 \text{ mA}$					
Change in $V_{GS(th)}$ with Temperature	$\Delta V_{GS(th)}$	—	_	4.5	mV/°C	$V_{GS} = V_{DS}, I_D = -1 \text{ mA}$					
Gate-to-source Shunt Resistor	R _{GS}	10	_	50	kΩ	I _{GS} = 100 μA, if applied					
Gate-to-source Zener Voltage	V _{ZGS}	13.2	_	25	V	I_{GS} = -2 mA, if applied					
Zero-gate Voltage Drain Current		-		-10	μA	V _{DS} = Maximum rating, V _{GS} = 0V					
Zero-yale voltage Drain Gurrent	IDSS	_		-1	mA	V _{DS} = 0.8 maximum rating, V _{GS} = 0V, T _A = 125°C					
ON-state Drain Current		-1.2	_	—	Α	$V_{GS} = -5V, V_{DS} = -25V$					
ON-State Drain Current	I _{D(ON)}	-2.3	-2.5	—	~	V _{GS} = -10V, V _{DS} = -50V					
Static Drain-to-source ON-state	R _{DS(ON)}	_		8.5	Ω	V _{GS} = –5V, I _D = –150 mA					
Resistance		—		7		V _{GS} = -10V, I _D = -1A					
Change in R _{DS(ON)} with Temperature	$\Delta R_{DS(ON)}$	—		1	%/°C	V_{GS} = -10V, I_{D} = -1 mA					
AC PARAMETER			-								
Forward Transconductance	G _{FS}	400		—	mmho	V_{DS} = -25V, I_{D} = -500 mA					
Input Capacitance	C _{ISS}	—	75	_		$V_{GS} = 0V,$					
Common Source Output Capacitance	C _{OSS}	—	21	_	pF	V _{DS} = -25V,					
Reverse Transfer Capacitance	C _{RSS}	—	6.5	_		f = 1 MHz					
DIODE PARAMETER											
Diode Forward Voltage Drop	V _{SBD}	_	—	1.8	V	V _{GS} = 0V, I _{SD} = 500 mA					
Reverse Recovery Time of Body Diode	t _{rrBD}	—	300	—	ns						
PULSEI	R AND DAMP	PING N-	CHAN	NEL MO	DSFET						
DC PARAMETER											
Drain-to-source Breakdown Voltage	BV _{DSS}	200	—	—	V	V _{GS} = 0V, I _D = 2 mA					
Gate Threshold Voltage	V _{GS(th)}	1	—	2.4	V	$V_{GS} = V_{DS}, I_D = 1 \text{ mA}$					

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: GND = 0V, $V_H = V_{DD} = +10V$, $V_L = V_{SS} = 0V$, $V_{PE} = 3.3V$, $V_{PP} = +100V$, $V_{NN} = -100V$, $T_A = 25^{\circ}C$ unless otherwise specified.

$T_{A} = 25$ C unless otherwise specified.									
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions			
Change in V _{GS(th)} with Temperature	$\Delta V_{GS(th)}$	—	—	-4.5	mV/°C	$V_{GS} = V_{DS}, I_D = 1 \text{ mA}$			
Gate-to-source Shunt Resistor	R _{GS}	10	_	50	kΩ	I _{GS} = 100 μΑ			
Gate-to-source Zener Voltage	V _{ZGS}	13.2	_	25	V	I _{GS} = 2 mA			
Zero Gate Voltage Drain Current	lace	_	_	10	μA	V _{DS} = Maximum rating, V _{GS} = 0V			
	I _{DSS}	_		1	mA	V_{DS} = 0.8 maximum rating, V_{GS} = 0V, T _A = 125°C			
ON-state Drain Current	I	1.3	_	—	Α	V_{GS} = 5V, V_{DS} = 25V			
	I _{D(ON)}	2.3	2.5	—		V _{GS} = 10V, V _{DS} = 50V			
Static Drain-to-source ON-state	R _{DS(ON)}	_	_	6.5	Ω	V _{GS} = 5V, I _D = 150 mA			
Resistance		—	_	6	12	V _{GS} = 10V, I _D = 1A			
Change in R _{DS(ON)} with Temperature	$\Delta R_{DS(ON)}$	_	_	1	%/°C	V _{GS} = 10V, I _D = 1A			
AC PARAMETER									
Forward Transconductance	G _{FS}	400	_	_	mmho	V _{DS} = 25V, I _D = 500 mA			
Input Capacitance	C _{ISS}	_	56	—		$V_{GS} = 0V,$			
Common Source Output Capacitance	C _{OSS}	_	13	—	pF	V _{DS} = 25V,			
Reverse Transfer Capacitance	C _{RSS}	_	2	—	1	f = 1 MHz			
DIODE PARAMETER	-			•		•			
Diode Forward Voltage Drop	V _{SBD}	_	—	1.8	V	V _{GS} = 0V, I _{SD} = 500 mA			
Reverse Recovery Time of Body Diode	t _{rrBD}		300		ns				

HV7631 T/R SWITCH CHARACTERISTICS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Breakdown Voltage from XDCR to Rx	B _{VA-B}	±130	—	—	V	I _{A–B} = ±1 mA
Switch-on Resistance from XDCR to Rx	R _{SW}	_	15	_	Ω	I _{A–B} = ±5 mA
V _{A-B} Trip Point to Turn Off	V _{TRIP}	—	±1	±2	V	
Switch Turn-off Voltage	V _{OFF}	—	±2	—	V	$I_{A-B} = \pm 1 \text{ mA}$
Switch-off Current	I _{A-B(OFF)}	_	±200	±300	μA	V _{A–B} = ±130V
Peak Switching Current	I _{PEAK}	—	±60	—	mA	
Turn-off Time	T _{OFF}	—	—	20	ns	
Turn-on Time	T _{ON}	_	_	20	ns	
Switch-on Capacitance from A to B or B to A	C _{SW(ON)}	—	21	—	pF	SW = On
Switch-off Capacitance from A to B or B to A	C _{SW(OFF)}	_	15	_	pF	V _{SW} = 25V
Small Signal Bandwidth	BW	_	100	_	MHz	R _{LOAD} = 50Ω

TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise noted, for all specifications $T_A = T_J = +25^{\circ}C$.									
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions			
TEMPERATURE RANGE									
Maximum Junction Temperature	TJ	_	_	125	°C				
Operating Temperature	T _A	-20	_	+85	°C				
PACKAGE THERMAL RESISTANCE									
22-Lead CABGA	θ_{JA}	_	106	_	°C/W				

POWER-UP AND POWER-DOWN SEQUENCE¹

	Power-up	Power-down			
Step	Description	Step	Description		
1	V _{LL}	1	PE inactive		
2	V_{DD} , V_{H} , V_{SS} and V_{L} with signal logic low	2	V_{PP} and V_{NN} off		
3	V_{PP} and V_{NN}	3	V_{DD} , V_{H} , V_{SS} and V_{L} off		
4	PE active	4	V _{LL} off		

Note 1: Powering up or down in any arbitrary sequence will not cause any damage to the device. The power-up sequence and power-down sequence are only recommended to minimize possible inrush current.

LOGIC CONTROL TABLE

PE		Input	Pulse		Output MOSFETs				
FE	INA	INB	INC	IND	SP1 to DP1	DN1 to SN1	SP2 to DP2	DN2 to SN2	
	1	Х	Х	Х	ON	Х	Х	Х	
	Х	1	Х	Х	Х	ON	Х	Х	
	Х	Х	1	Х	Х	Х	ON	Х	
1	Х	Х	Х	1	Х	Х	Х	ON	
-	0	Х	Х	Х	OFF	Х	Х	Х	
	Х	0	Х	Х	Х	OFF	Х	Х	
	Х	Х	0	Х	Х	Х	OFF	Х	
	Х	Х	Х	0	Х	Х	Х	OFF	
0	Х	Х	Х	Х	OFF	OFF	OFF	OFF	

2.0 PAD DESCRIPTION

Table 2-1detailsthedescriptionofpadsinHV7360/HV7361.Refer toPackageTypeforthelocation of pads.

Pad Location	HV7360 Symbol	HV7361 Symbol	Description						
A1	GND	GND	Driver and level translator circuit ground return (0V)						
A2	IND	IND	Damping N-FET control signal logic input, controlling N-FET2						
A3	INC	INC	Damping P-FET control signal logic input, controlling P-FET2						
A4	V _{SS}	V _{SS}	Negative voltage power supply (0V)						
A6	V _{DD}	V _{DD}	Positive voltage supply (+10V), should connect to an external decoupling cap to V_{SS} (0V)						
A7	INB	INB	Pulsing N-FET control signal logic input, controlling N-FET1						
A8	INA	INA	Pulsing P-FET control signal logic input, controlling P-FET1						
A9	PE	PE	Drive power enable Hi = On, Low = Off, logic `1' voltage reference input (+2.5V to +3.3V)						
B2	V _{L2}	V _{L2}	Gate-drive negative voltage power supply (0V)						
B8	V _{L1}	V _{L1}	Gate-drive negative voltage power supply (0V)						
F4	V _H	V _H	Gate-drive positive voltage power supply (+10V)						
F7	V_{L3}	V_{L3}	$V_{\rm H}$ to $V_{\rm L}$ decoupling cap. The trace connecting $V_{L1},$ $V_{L2},$ and V_{L3} (0V) to ground plane should be as short as possible.						
G4	NC	_	No connection for HV7360						
G4	_	RX	T/R switch output for HV7361						
P1	SP2	SP2	Source of P-FET2, positive high voltage power supply (0V to +100V) or GND						
P2	DP2	DP2	Drain of P-FET2, transmit pulser output						
P3	DN2	DN2	Drain of N-FET2, transmit pulser output						
P4	SN2	SN2	Source of N-FET2, negative high voltage power supply (0V to –100V) or GND						
P5	NC	—	No connection for HV7360						
15	—	XDCR	T/R switch input for HV7361						
P6	SP1	SP1	Source of P-FET1, positive high voltage power supply (0V to +100V)						
P7	DP1	DP1	Drain of P-FET1, transmit pulser output						
P8	DN1	DN1	Drain of N-FET1, transmit pulser output						
P9	SN1	SN1	Source of N-FET1, negative high voltage power supply (0V to –100V)						

TABLE 2-1: PAD FUNCTION TABLE

3.0 FUNCTIONAL DESCRIPTION

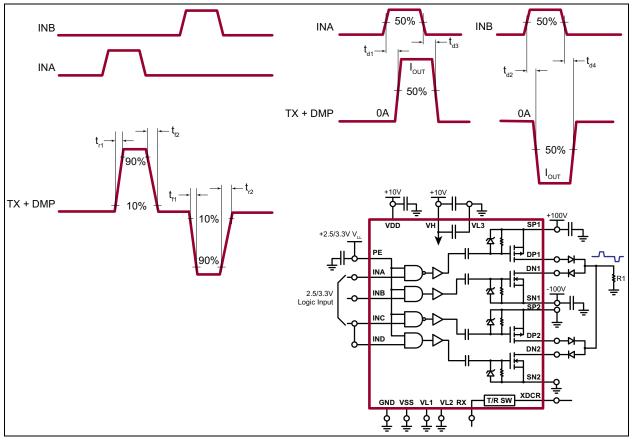


FIGURE 3-1: Pulser Timing Test for HV7360/HV7361.

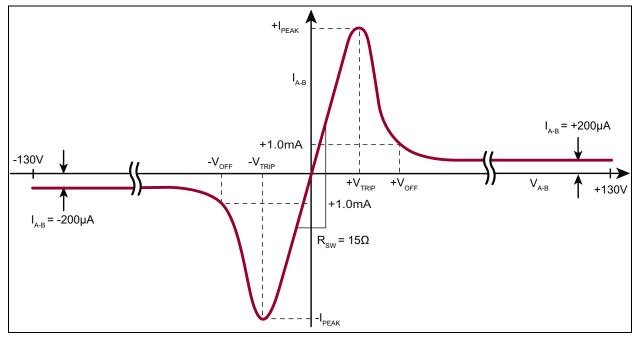
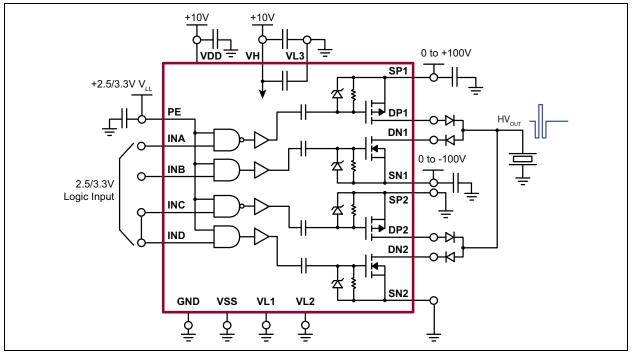




FIGURE 3-2: T/R Switch I-V curve for HV7361.

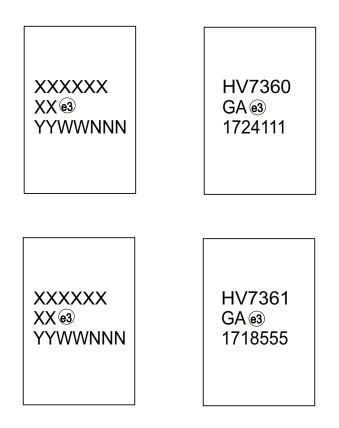
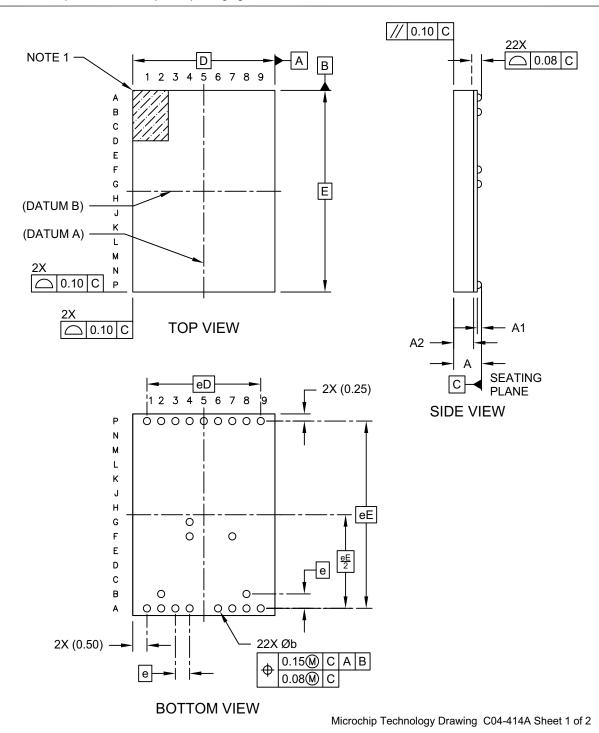
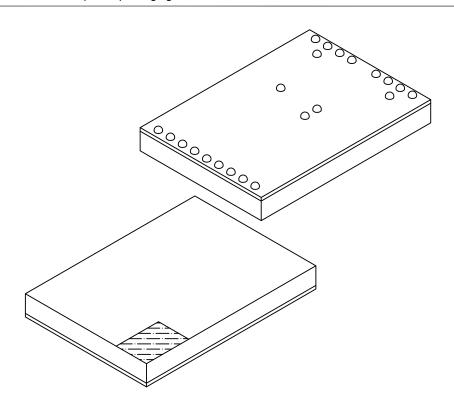

FIGURE 3-3: Typical Bipolar One-channel Three-level Ultrasound Transmitter Application Circuit for HV7360/HV7361.

FIGURE 3-4: Typical Unipolar Two-channel Two-level Ultrasound Transmitter Application Circuit for HV7360/HV7361.

4.0 PACKAGING INFORMATION


4.1 Package Marking Information

Legend:	XXX Y YY WW NNN @3 *	Product Code or Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
ł	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for product code or customer-specific information. Package may or e the corporate logo.


22-Ball Chip Array Ball Grid Array (JY) - 5x7 mm Body [CABGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

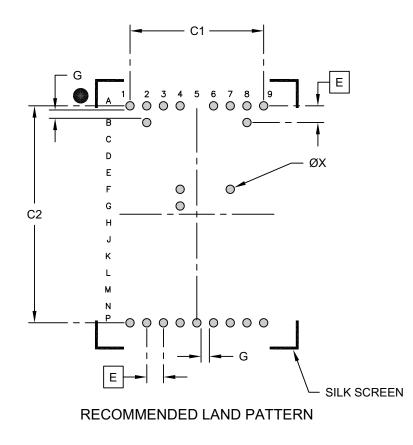
22-Ball Chip Array Ball Grid Array (JY) - 5x7 mm Body [CABGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Terminals	-		22				
Pitch	е		0.50 BSC				
Overall Height	Α	0.91	0.98	1.05			
Ball Height	A1	0.12	0.15	-			
Package Thickness	A2	0.66	0.70	0.74			
Overall Length	D		5.00 BSC				
Overall Terminal Pitch	eD		4.00 BSC				
Overall Width	E	7.00 BSC					
Overall Terminal Pitch	еE	6.50 BSC					
Ball Diameter	b	0.20	0.25	0.30			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-414A Sheet 2 of 2

22-Ball Chip Array Ball Grid Array (JY) - 5x7 mm Body [CABGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		S	
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1		4.00		
Contact Pad Spacing	C2		6.50		
Contact Pad Diameter (X22)	Х		0.25		
Contact Pad to Contact Pad	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2414A

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (June 2016)

- Converted Supertex Doc# DSFP-HV7360 and Supertex Doc# DSFP-HV7361 to Microchip DS20005570B
- Meged HV7360 and HV7361 into one document
- Replaced the 22-lead LFGA "LA" package with 22-lead CABGA "GA" package
- Made minor text changes throughout the document

Revision B (April 2017)

- Removed the INC to IND connection line and changed the typical high voltage supply from +200V to +100V in Figure 3-4
- Removed "HVCMOS® Technology for High Performance" from the Features Section
- Made minor text changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO	<u>. xx</u>		- <u>x</u> - <u>x</u>	Examples:	
Device	Packa Optio		Environmental Media Type	a) HV7360GA-G:	High-Voltage High-Speed Pulse Generator with Built-in Fast RTZ Damping FET, 22-lead CABGA
Devices:	HV7360	=	High-Voltage High-Speed Pulse Generator		Package, 364/Tray
	HV7361	=	with Built-in Fast RTZ Damping FETs High-Voltage High-Speed Pulse Generator with Built-in Fast RTZ Damping FETs and an Integrated Two-Terminal Low-Noise T/R Switch	b) HV7361GA-G:	High-Voltage High-Speed Pulse Generator with Built-in Fast RTZ Damping FET and an Integrated Two-Terminal Low-Noise T/R Switch, 22-lead CABGA Package, 364/Tray
Package:	GA	=	22-lead CABGA		
Environmental:	G	=	Lead (Pb)-free/RoHS-compliant Package		
Media Type:	(blank)	=	364/Tray for GA Package		

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELoa, KEELoa logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-1563-3

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820