: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

40MHz, 32-Channel Serial to Parallel Converter with Push-Pull Outputs

Features

- $\mathrm{HVCMOS}^{\circledR}$ technology
- 5.0 V logic and 12 V supply rail
- Output voltage up to +200 V
- Low power level shifting
- Source/sink current minimum 50 mA
- 40 MHz equivalent data rate
- Latched data outputs
- Forward and reverse shifting options (DIR pin)
- Chip select
- Polarity function

General Description

The HV7620 is a low-voltage serial to high-voltage parallel converter with push-pull outputs. This device has been designed for use as a driver for color AC plasma displays.

The device has 4 parallel 8 -bit shift registers permitting data rates four times the speed of one. The data is clocked in simultaneously on all four data inputs with a single clock. Data is shifted in on a low to high transition of the clock. The latches and control logic perform the output enable function.

The DIR pin causes clockwise (CW) shifting of the data when connected to VDD1, and counterclockwise (CCW) shifting when connected to LVGND. Operation of the shift register is not affected by the $\overline{\mathrm{LE}}$ (latch enable) input. Transfer of data from the shift registers to the latches occurs when the $\overline{\mathrm{LE}}$ input is high. Data is stored in the latches when $\overline{\mathrm{LE}}$ is low. The current source on the logic inputs provides active pull up when the input pins are open.

Functional Block Diagram

Ordering Information / Availability

Part Number	Package Option	Packing
HV7620PG-G	64-Lead PQFP (3-sided)	66/tray

ESD Sensitive Device

-G denotes a lead (Pb)-free / RoHS compliant package

Absolute Maximum Ratings

Parameter	Value
Supply voltage, $\mathrm{V}_{\mathrm{DD} 1}$	-0.5 V to +14 V
Supply voltage, $\mathrm{V}_{\mathrm{DD} 2}$	-0.5 V to +14 V
Supply voltage, V_{PP}	-0.5 V to +225 V
Logic input levels	-2.0 V to $\mathrm{V}_{\mathrm{DD} 1}+2.0 \mathrm{~V}$
Continuous total power dissipation ${ }^{1}$	1200 mW
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Notes:

1. For operation above $25^{\circ} \mathrm{C}$ ambient derate linearly to maximum operating temperature at $20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Pin Configuration

Product Marking

L = Lot Number
 YY = Year Sealed WW = Week Sealed C = Country of Origin A = Assembler ID
\qquad = "Green" Packaging Package may or may not include the following marks: Si or 37
64-Lead PQFP (3-sided)

Typical Thermal Resistance

Package	$\theta_{j a}$
64-Lead PQFP	$41^{\circ} \mathrm{C} / \mathrm{W}$

Recommended Operating Conditions

\left.| Sym | | Parameter | Min | Max |
| :---: | :--- | :---: | :---: | :---: |$\right]$ Units

Notes:

1. The current pulse width $=500 \mathrm{~ns}$, duty cycle $=5 \%$.

DC Electrical Characteristics
(Over operating supply voltages and temperature, unless otherwise noted, $V_{D D 1}=5.0 \mathrm{~V}, V_{D D 2}=12 \mathrm{~V}, V_{P P}=200 \mathrm{~V}$ and $T_{j}=25^{\circ} \mathrm{C}$)

Sym	Parameter		Min	Max	Units	Conditions
$\mathrm{I}_{\mathrm{DD} 1}$	$\mathrm{V}_{\mathrm{DD} 1}$ supply current		-	5.0	mA	$\mathrm{f}_{\text {CLK }}=10 \mathrm{MHz}$
$\mathrm{I}_{\mathrm{DD} 2}$	$\mathrm{V}_{\text {DD2 }}$ supply current		-	20	mA	$\mathrm{V}_{\mathrm{DD} 2}=13.2 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz}$
$\mathrm{I}_{\text {pp }}$	High voltage supply current		-	2.0	mA	All outputs high or low
$\mathrm{I}_{\text {D19 }}$	Quiescent $\mathrm{V}_{\mathrm{DD} 1}$ supply current		-	100	$\mu \mathrm{A}$	All input $=\mathrm{V}_{\mathrm{DD} 1}$
$\mathrm{I}_{\text {DD2Q }}$	Quiescent $\mathrm{V}_{\mathrm{DD} 2}$ supply current		-	100	$\mu \mathrm{A}$	All input $=\mathrm{V}_{\mathrm{DD} 1}$
V_{OH}	High-level output	$\mathrm{HV}_{\text {OUT }}$	185	-	V	$\mathrm{I}_{\mathrm{O}}=-50 \mathrm{~mA}$
		Data OUT	$\mathrm{V}_{\mathrm{DD}}-1$	-		$\mathrm{I}_{0}=-100 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$	Low-level output	HV ${ }_{\text {out }}$	-	20	V	$\mathrm{I}_{0}=+50 \mathrm{~mA}$
		Data OUT	-	1.0		$\mathrm{I}_{\mathrm{O}}=+100 \mu \mathrm{~A}$
I_{H}	High-level logic input current		-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD} 1}$
$1 / 1$	Low-level logic input current		-	-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$V_{G G}$	HVGND to LVGND voltage difference		-1.0	1.0	V	---

AC Electrical Characteristics

(Logic signal inputs and data inputs have $t_{p} t_{f} \leq 5 n s . V_{D D 1}=5.0 \mathrm{~V}$ or $12 \mathrm{~V}, V_{D D 2}=12 \mathrm{~V}, V_{P P}=200 \mathrm{~V}$ and $T_{j}=25^{\circ} \mathrm{C}$)

Sym	Parameter		Min	Max	Units	Conditions
$\mathrm{f}_{\text {CLK }}$	Clock frequency	$\mathrm{V}_{\mathrm{DD} 1}=5.0 \mathrm{~V}$	-	10	MHz	Per register, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
		$V_{D D 1}=12 \mathrm{~V}$	-	5.0		
$\mathrm{t}_{\mathrm{wL}}, \mathrm{t}_{\text {wH }}$	Clock width high or low		40	-	ns	---
$\mathrm{t}_{\text {su }}$	Data set-up time before clock rises		20	-	ns	---
t_{H}	Data hold time after clock rises		20	-	ns	---
$\mathrm{t}_{\text {ON }} \mathrm{t}_{\text {OFF }}$	Time from latch enable to $\mathrm{HV}_{\text {OUT }}$		-	275	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$t_{\text {WLE }}$	LE pulse width		25	-	ns	---
$t_{\text {DLE }}$	Delay time clock to $\overline{\mathrm{LE}}$ low to high		50	-	ns	---
$\mathrm{t}_{\text {SLE }}$	$\overline{\mathrm{LE}}$ set-up time before clock rises		20	-	ns	---
$\mathrm{t}_{\text {DLF }} \mathrm{t}_{\text {DLN }}$	$\overline{\mathrm{BL}}$ or CS low to high to $\mathrm{HV}_{\text {out }}$		-	250	ns	---
$\mathrm{t}_{\text {COF }}{ }^{\text {c }} \mathrm{c}_{\text {CON }}$	Clock to HV ${ }_{\text {out }}$		-	275	ns	---
$\mathrm{t}_{\text {DLH }}$	Delay time clock to data low to high	$\mathrm{V}_{\mathrm{DD} 1}=5.0 \mathrm{~V}$	-	250	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
		$\mathrm{V}_{\mathrm{DD} 1}=12 \mathrm{~V}$	-	100		
$\mathrm{t}_{\text {DHL }}$	Delay time clock to data high to low	$\mathrm{V}_{\mathrm{DD} 1}=5.0 \mathrm{~V}$	-	250	ns	$C_{L}=15 p F$
		$\mathrm{V}_{\mathrm{DD} 1}=12 \mathrm{~V}$	-	100		

Input and Output Equivalent Circuits

Logic Inputs

High Voltage Outputs

Switching Waveforms

Function Table

	Inputs													HV ${ }_{\text {OUT }}$			
Function	$\mathrm{D}_{1 \times} \mathrm{A}$	$\mathrm{D}_{\text {IN }} \mathrm{B}$	$\mathrm{D}_{\text {IN }} \mathrm{C}$	$\mathrm{D}_{\text {IN }} \mathrm{D}$	CLK	$\overline{L E}$	DIR	$\overline{\text { BLA }}$	$\overline{\text { BLB }}$	$\overline{B L C}$	$\overline{\text { BLD }}$	CS	$\overline{\text { POL }}$	A	B	C	D
All O/P High	X	X	X	X	X	X	X	X	X	X	X	L	L	H	H	H	H
All O/P Low	X	X	X	X	X	X	X	X	X	X	X	L	H	L	L	L	L
"A"t Outputs Low	X	X	X	X	X	X	X	L	X	X	X	X	H	L	*	*	*
Normal Polarity	X	X	X	X	X	X	X	H	H	H	H	H	H		No In	rsion	
Outputs Inverted	X	X	X	X	X	X	X	H	H	H	H	H	L		Inve	sion	
Transparent Mode	H	L	L	L	\uparrow	H	X	H	H	H	H	H	H	H	L	L	L
Data Stored	X	X	X	X	X	L	X	H	H	H	H	H	H		Store	data	
Shift CW ${ }^{\text {A }}$	X	X	X	X	\uparrow	H	H	H	H	H	H	H	X	$\xrightarrow[\mathrm{A}_{\mathrm{N}+1}]{\mathrm{A}_{\mathrm{N}}}$	$\xrightarrow[\mathrm{B}_{\mathrm{N}+1}]{\mathrm{B}_{\mathrm{N}}}$	$\xrightarrow[C_{N+1}]{\mathrm{C}_{\mathrm{N}}}$	$\xrightarrow[D_{N+1}]{D_{N}}$
Shift CCW ${ }^{\text {B }}$	X	X	X	X	\uparrow	H	L	H	H	H	H	H	X	$\xrightarrow[\mathrm{A}_{\mathrm{N}-1}]{\mathrm{A}_{\mathrm{N}}}$	$\xrightarrow[\mathrm{B}_{\mathrm{N}-1}]{\mathrm{B}_{\mathrm{N}}}$	$\xrightarrow[\mathrm{C}_{\mathrm{N}-1}]{\mathrm{C}_{\mathrm{N}}}$	$\xrightarrow[D_{N-1}]{D_{N}}$

Notes:

$H=$ High level, $L=$ Low level, $X=$ Irrelevant, $\uparrow=$ Low to high transition.

* $=$ Dependent on previous stage's state before the last $C L K \uparrow$ for last $\overline{L E}$ high.
$t=\overline{B L B}, \overline{B L C}$ and $\overline{B L D}$ will have similar effect on their respective output.

Power-up sequence:

1. $G N D(H V, L V)$
2. $V_{D D 1}$
$\begin{array}{ll}\text { 3. } & V_{D D 1} \\ \text { 4. } & V_{P D}\end{array}$
3. Logic Input Signals

To power down reverse the sequence above.

Pin Function

Pin \#	Function
1	HVGND
2	VPP
3	$\mathrm{HV}_{\text {OUT }} \mathrm{D} 8$
4	$\mathrm{HV}_{\text {OUT }} \mathrm{C} 8$
5	$\mathrm{HV}_{\text {OUT }} \mathrm{B8}$
6	$\mathrm{HV}_{\text {out }} \mathrm{A}^{\text {8 }}$
7	$\mathrm{HV}_{\text {OUT }} \mathrm{D7}^{\text {d }}$
8	$\mathrm{HV}_{\text {OUT }} \mathrm{C7}$
9	$\mathrm{HV}_{\text {OUT }} \mathrm{B7}$
10	$\mathrm{HV}_{\text {Out }} \mathrm{A}^{\text {7 }}$
11	$\mathrm{HV}_{\text {OUT }} \mathrm{D} 6$
12	$\mathrm{HV}_{\text {OUT }} \mathrm{C} 6$
13	$\mathrm{HV}_{\text {OUT }} \mathrm{B6}$
14	$\mathrm{HV}_{\text {out }} \mathrm{A} 6$
15	$\mathrm{HV}_{\text {out }} \mathrm{D} 5$
16	$\mathrm{HV}_{\text {OUT }} \mathrm{C} 5$

Pin \#	Function
17	HV $_{\text {OUT }} \mathrm{B5}$
18	$\mathrm{HV}_{\text {our }} \mathrm{A} 5$
19	VPP
20	HVGND
21	HVGND
22	VDD2
23	$\overline{\text { BLC }}$
24	$\overline{\text { BLD }}$
25	$\overline{\text { LE }}$
26	$\mathrm{D}_{\text {OUT }} \mathrm{D}$
27	$\mathrm{D}_{\text {IN }} \mathrm{D}$
28	$\mathrm{D}_{\text {IN }} \mathrm{C}$
29	$\mathrm{D}_{\text {OUT }} \mathrm{C}$
30	$\overline{\text { POL }}$
31	LVGND
32	DIR

Pin \#	Function
33	CS
34	$\mathrm{D}_{\text {ouT }} \mathrm{B}$
35	$\mathrm{D}_{\text {IN }} \mathrm{B}$
36	$\mathrm{D}_{\text {IN }} \mathrm{A}$
37	$\mathrm{D}_{\text {out }} \mathrm{A}$
38	CLK
39	$\overline{\text { BLA }}$
40	$\overline{\text { BLB }}$
41	VDD1
42	LVGND
43	N/C
44	HVGND
45	HVGND
46	VPP
47	HV $_{\text {ouT }}$ D4
48	HV ${ }_{\text {oUT }} \mathrm{C} 4$

Pin \#	Function
49	$\mathrm{HV}_{\text {Out }} \mathrm{B4}$
50	HV out ${ }^{\text {A }} 4$
51	$\mathrm{HV}_{\text {OUT }} \mathrm{D} 3$
52	$\mathrm{HV}_{\text {OUT }} \mathrm{C} 3$
53	$\mathrm{HV}_{\text {out }} \mathrm{B} 3$
54	$\mathrm{HV}_{\text {out }} \mathrm{A} 3$
55	$\mathrm{HV}_{\text {OUT }} \mathrm{D}^{\text {d }}$
56	$\mathrm{HV}_{\text {OUT }} \mathrm{C} 2$
57	$\mathrm{HV}_{\text {out }} \mathrm{B} 2$
58	$\mathrm{HV}_{\text {out }} \mathrm{A}^{\text {2 }}$
59	$\mathrm{HV}_{\text {Out }} \mathrm{D} 1$
60	$\mathrm{HV}_{\text {OUT }} \mathrm{C} 1$
61	$\mathrm{HV}_{\text {out }} \mathrm{B} 1$
62	$\mathrm{HV}_{\text {out }} \mathrm{A}^{\text {1 }}$
63	VPP
64	HVGND

64-Lead PQFP (3-Sided) Package Outline (PG)

20.00x14.00mm body, 3.40 mm height (max), 0.80 mm pitch, 3.90 mm footprint

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
2. The leads on this side are trimmed.

Symbol		A	A1	A2	b	D	D1	E	E1	e	L	L1	L2	L3	θ	$\theta 1$
Dimension (mm)	MIN	2.80	0.25	2.55	0.30	22.25	19.80	17.65	13.80	$\begin{aligned} & 0.80 \\ & \text { BSC } \end{aligned}$	0.73	$\begin{aligned} & 1.95 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	$\begin{aligned} & 0.55 \\ & \text { REF } \end{aligned}$	0°	5°
	NOM	-	-	2.80	-	22.50	20.00	17.90	14.00		0.88				$3.5{ }^{\circ}$	-
	MAX	3.40	0.50	3.05	0.45	22.75	20.20	18.15	14.20		1.03				7°	16°

Drawings not to scale.
Supertex Doc. \#: DSPD-64PQFPPG, Version A080812.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

