: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High Voltage EL Lamp Driver IC

Features

- Processed with HVCMOS ${ }^{\circledR}$ technology
- 2.0 to 9.5 V operating supply voltage
- DC to AC conversion
- 180V peak-to-peak typical output voltage
- Large output load capability typically 50 nF
- Permits the use of high-resistance elastomeric lamp components
- Adjustable output lamp frequency to control lamp color, lamp life, and power consumption
- Adjustable converter frequency to eliminate harmonics and optimize power consumption
- Enable/disable function
- Low current draw under no load condition

Applications

- Handheld personal computers
- Electronic personal organizers
- GPS units
- Pagers
- Cellular phones
- Portable instrumentation

General Description

The Supertex HV823 is a high-voltage driver designed for driving EL lamps of up to 50 nF . EL lamps greater than 50 nF can be driven for applications not requiring high brightness. The input supply voltage range is from 2.0 V to 9.5 V . The device uses a single inductor and a minimum number of passive components. The nominal regulated output voltage that is applied to the EL lamp is $\pm 90 \mathrm{~V}$. The chip can be enabled by connecting the resistors on the RSW-Osc pin and the REL-Osc pin to the VDD pin, and disabled when connected to GND.
The HV823 has two internal oscillators, a switching MOSFET and a high-voltage EL lamp driver. The frequency of the switching converter MOSFET is set by an external resistor connected between the RSWOsc pin and the VDD supply pin. The EL lamp driver frequency is set by an external resistor connected between the REL-Osc pin and the VDD pin. An external inductor is connected between the LX pin and the VDD pin. $\mathrm{A} 0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ capacitor is connected between the CS pin and the GND. The EL lamp is connected between the VA and VB pins.

The switching MOSFET charges the external inductor and discharges it into the C_{s} capacitor. The voltage at C_{s} will start to increase. Once the voltage at C_{S} reaches a nominal value of 90 V , the switching MOSFET is turned OFF to conserve power. The output pins VA and VB are configured as an H -bridge and are switched in opposite states to achieve 180 V peak-to-peak across the EL lamp.
For additional information, see Application Note ANH34.

Block Diagram

Ordering Information

Part Number	Package	Packing
HV823LG-G	8-Lead SOIC	2500/Reel

-G denotes a lead (Pb)-free / RoHS compliant package

Absolute Maximum Ratings

Parameter	Value
Supply voltage, V_{DD}	-0.5 to +10 V
Output voltage, V_{CS}	-0.5 to +120 V
Power dissipation	400 mW
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating temperature	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. All voltages referenced to ground.

Note: All voltages referenced to GND.

Pin Configuration

Product Marking

Y = Last Digit of Year Sealed WW = Week Sealed
L = Lot Number
= "Green" Packaging
Package may or may not include the following marks: Si or \$i
8-Lead SOIC

Typical Thermal Resistance

Package	$\boldsymbol{\theta}_{\mathrm{ia}}$
8 -Lead SOIC	$101^{\circ} \mathrm{C} / \mathrm{W}$

Recommended Operating Conditions

Sym	Parameter	Min	Typ	Max	Unit	Conditions
$V_{D D}$	Supply voltage	2.0	-	9.5	V	---
T_{A}	Operating temperature	-25	-	+85	${ }^{\circ} \mathrm{C}$	---

DC Electrical Characteristics $\left(V_{I N}=3.0 \mathrm{~V}, R_{S W}=750 \mathrm{~K} \Omega, R_{E L}=2.0 \mathrm{M} \Omega, T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Sym	Parameter	Min	Typ	Max	Unit	Conditions
$\mathrm{R}_{\text {DS(ON) }}$	On resistance of switching transistor	-	2.0	6.0	Ω	$\mathrm{I}=100 \mathrm{~mA}$
$\mathrm{V}_{\text {cs }}$	Output voltage $\mathrm{V}_{\text {cs }}$ regulation	80	90	100	V	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ to 9.5 V
$V_{A}-V_{B}$	Output peak-to-peak voltage	160	180	200	V	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ to 9.5 V
$\mathrm{I}_{\text {DDQ }}$	Quiescent V_{DD} supply current, disabled	-	30	100	nA	$\mathrm{R}_{\text {sw-osc }}=$ Low
I_{DD}	$\mathrm{V}_{\text {DD }}$ supply current	-	150	200	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}$. See Fig. 1
		-	-	300	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$. See Fig. 2
		-	-	500	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=9.0 \mathrm{~V}$. See Fig. 3
$\mathrm{I}_{\text {IN }}$	Input current including inductor current	-	25	33	mA	$\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}$. See Fig. 1
$\mathrm{V}_{\text {cs }}$	Output voltage on $\mathrm{V}_{\text {cs }}$	60	70	85	V	$\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}$. See Fig. 1
f_{EL}	$V_{A}-V_{B}$ output drive frequency	330	380	450	Hz	$\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}$. See Fig. 1
$\mathrm{f}_{\text {sw }}$	Inductor switching frequency	50	60	70	KHz	$\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}$. See Fig. 1
D	Switching transistor duty cycle	-	88	-	\%	---

Fig. 1: Test Circuit, $\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}$ (Low input current with moderate output brightness)

For additional information, see Application Notes AN-H33 and AN-H34.

Typical Performance

Lamp Size	$\mathbf{V}_{\mathbf{I N}}$	$\mathbf{I}_{\mathbb{N}}$	\mathbf{V}_{cs}	\mathbf{f}_{EL}	Brightness
$3.0 \mathrm{in}^{2}$	3.0 V	25 mA	65 V	385 Hz	6.5 ft Im

Notes:

1. Murata part \# LQH4N561K04 (DC resistance < 14.5』)
2. Larger values may be required depending upon supply impedance.

Typical Performance Curves for Fig. 1 using 3.0in ${ }^{2}$ EL Lamp

Fig. 2: Typical 5.0V Application

For additional information, see Application Notes AN-H33 and AN-H34.

Typical Performance

Lamp Size	$\mathbf{V}_{\mathbb{N}}$	$\mathbf{I}_{\mathbb{N}}$	$\mathbf{V}_{\text {Cs }}$	\mathbf{f}_{EL}	Brightness
$6.0 \mathrm{in}^{2}$	5.0 V	25 mA	75 V	380 Hz	$6.5 \mathrm{ft}-\mathrm{Im}$

Notes:

1. Murata part \# LQH4N561K04 (DC resistance < 14.5)
2. Larger values may be required depending upon supply impedance.

Typical Performance Curves for Fig. 2 using 6.0in ${ }^{2}$ EL Lamp

Brightness vs. $\mathbf{V}_{\text {IN }}$

Fig. 3: Typical 9.0V Application

For additional information, see Application Notes AN-H33 and AN-H34.

Typical Performance

Lamp Size	$\mathbf{V}_{\mathbf{I N}}$	\mathbf{I}_{N}	\mathbf{V}_{cs}	\mathbf{f}_{EL}	Brightness
$12.0 \mathrm{in}^{2}$	9.0 V	30 mA	75 V	380 Hz	$8.5 \mathrm{ft}-\mathrm{Im}$

Notes:

1. Murata part \# LQH4N561K04 (DC resistance < 14.5』)
2. Larger values may be required depending upon supply impedance.

Typical Performance Curves for Fig. 3 using 12.0in² EL Lamp

Enable/Disable Configuration

The HV823 can be easily enabled and disabled via a logic control signal on the $R_{\text {Sw }}$ and $R_{E L}$ resistors as shown in Fig. 4. The control signal can be from a microprocessor. $R_{s w}$ and R_{EL} are typically very high values, therefore, only 10 's of microamperes will be drawn from the logic signal when it is at a logic high (enable) state. When the microprocessor signal is high the device is enabled and when the signal is low, it is disabled.

Enable/Disable Table

\mathbf{R}_{sw} Resistor	HV823
V_{DD}	Enable
0 V	Disable

Fig. 4: Enable/Disable Configuration

Split Supply Configuration Using a Single Cell (1.5V) Battery

The HV823 can also be used for handheld devices operating from a single cell 1.5 V battery where a regulated voltage is available. This is shown in Fig. 5. The regulated voltage can be used to run the internal logic of the HV823. The amount of current necessary to run the internal logic is typically $100 \mu \mathrm{~A}$
at a V_{DD} of 3.0 V . Therefore, the regulated voltage could easily provide the current without being loaded down. The HV823 used in this configuration can also be enabled/disabled via logic control signal on the $R_{\text {sw }}$ and $R_{E L}$ resistors as shown in Fig. 4.

Split Supply Configuration for Battery Voltages of Higher than 9.5V

Fig. 5 can also be used with high battery voltages, such as

Fig. 5: Split Supply Configuration

External Component Description

External Component	Selection Guide Line
Diode	Fast reverse recovery diode, 1N4148 or equivalent.
CS Capacitor	$0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$ capacitor to GND is used to store the energy transferred from the inductor.
REL-Osc	The EL lamp frequency is controlled via an external $R_{\text {EL }}$ resistor connected between REL-Osc and VDD pins of the device. The lamp frequency increases as R_{EL} decreases. As the EL lamp frequency increases, the amount of current drawn from the battery will increase and the output voltage V_{CS} will decrease. The color of the EL lamp is dependent upon its frequency. A 2.0M resistor would provide lamp frequency of 330 to 450 Hz . Decreasing the $R_{\text {EL-Osc }}$ by a factor of 2 will increase the lamp frequency by a factor of 2.
RSW-Osc	The switching frequency of the converter is controlled via an external resistor, $R_{s w}$ between the RSW-Osc and VDD pins of the device. The switching frequency increases as $R_{s w}$ decreases. With a given inductor, as the switching frequency increases, the amount of current drawn from the battery will decrease and the output voltage, V_{CS}, will also decrease.
CSW Capacitor	A 1.0 nF capacitor is recommended on RSW-Osc to GND when a $0.01 \mu \mathrm{~F} \mathrm{C}_{\mathrm{s}}$ capacitor is used. This capacitor is used to shunt any switching noise that may couple into the RSW-OSC pin. The C_{sw} capacitor may also be needed when driving large EL lamp due to increase in switching noise. A_{sw} larger than 1.0 nF is not recommended.
LX Inductor	The inductor LX is used to boost the low input voltage by inductive flyback. When the internal switch is on, the inductor is being charged. When the internal switch is off, the charge stored in the inductor will be transferred to the high voltage capacitor C_{s}. The energy stored in the capacitor is connected to the internal H -bridge and therefore to the EL lamp. In general, smaller value inductors, which can handle more current, are more suitable to drive larger size lamps. As the inductor value decreases, the switching frequency of the inductor (controlled by $R_{s w}$) should be increased to avoid saturation. $560 \mu \mathrm{H}$ Murata inductors with 14.5Ω series DC resistance is typically recommended. For inductors with the same inductance value but with lower series DC resistance, lower $R_{s w}$ value is needed to prevent high current draw and inductor saturation.
Lamp	As the EL lamp size increases, more current will be drawn from the battery to maintain high voltage across the EL lamp. The input power, $\left(\mathrm{V}_{\mathbb{I N}} \times \mathrm{I}_{\mathbb{N}}\right)$, will also increase. If the input power is greater than the power dissipation of the package $(400 \mathrm{~mW})$, an external resistor in series with one side of the lamp is recommended to help reduce the package power dissipation.

8-Lead SOIC (Narrow Body) Package Outline (LG)

$4.90 \times 3.90 \mathrm{~mm}$ body, 1.75 mm height (max), 1.27mm pitch

View A-A

Note:

1. This chamfer feature is optional. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	E	E1	e	h	L	L1	L2	θ	01
$\begin{aligned} & \text { Dimension } \\ & (\mathrm{mm}) \end{aligned}$	MIN	1.35*	0.10	1.25	0.31	4.80*	5.80*	3.80*	$\begin{aligned} & 1.27 \\ & \text { BSC } \end{aligned}$	0.25	0.40	$\begin{aligned} & 1.04 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	5°
	NOM	-	-	-	-	4.90	6.00	3.90		-	-			-	-
	MAX	1.75	0.25	1.65*	0.51	5.00*	6.20*	4.00*		0.50	1.27			8°	15°

JEDEC Registration MS-012, Variation AA, Issue E, Sept. 2005.

* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.

Supertex Doc. \#: DSPD-8SOLGTG, Version 1041309.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

