: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Type USVD and Type HVD Ultra-Precision Voltage Dividers - 450 Volts to 5 KV

Type USVD Ultra-Precision Voltage Dividers have the very highest precision available in voltage dividers in the range of 450 Volts DC up to 2000 Volts DC. These dividers are formed by bonding together two selected Type USF Ultra-Precision Resistors. The precise selection of these high performance resistors, which form the voltage dividers, makes possible the outstanding voltage division performance. Ratio Tolerance as tight as 0.01% and Ratio TC of $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Type HVD Ultra-Precision Voltage Dividers are monolithic voltage dividers built with ceramic sandwich construction. These voltage dividers have ultra-precision performance in the range of 1500 volts DC to 5000 volts DC, with a Ratio Tolerance of 0.05% and Ratio TC of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. These dividers are ideal for high performance voltage division applications in medical equipment, laboratory equipment, analytical instruments, etc.

Part Number		Voltage Division (RT : R2)	Resistance			Ratio Tolerance (RT : R2)	Ratio T.C. (RT : R2)	$\begin{aligned} & \text { Ratio V.C. } \\ & \text { (RT : R2) } \end{aligned}$	Fig.
			R1	R2	$\mathbf{R T}=\mathbf{R 1}+\mathbf{R 2}$				
USVD2-B1M - 010-02	450	100:1	990 K	10 K	1 Meg	0.01\%	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.05 \mathrm{ppm} / \mathrm{V}$	1
USVD2 - B1M - 025-02	450	100:1	990 K	10 K	1 Meg	0.025\%	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.05 \mathrm{ppm} / \mathrm{V}$	1
USVD2 - B2M - 010-02	650	100:1	1.98 Meg	20 K	2 Meg	0.01\%	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.02 \mathrm{ppm} / \mathrm{V}$	1
USVD2 - B2M - 025-02	650	100:1	1.98 Meg	20 K	2 Meg	0.025\%	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.02 \mathrm{ppm} / \mathrm{V}$	1
USVD2 - A10M - 010-02	1400	1,000 : 1	9.99 Meg	10 K	10 Meg	0.01\%	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.02 \mathrm{ppm} / \mathrm{V}$	1
USVD2 - A10M - 025-02	1400	1,000: 1	9.99 Meg	10 K	10 Meg	0.025\%	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.02 \mathrm{ppm} / \mathrm{V}$	1
USVD2 - B10M - 010-02	1400	100:1	9.9 Meg	100 K	10 Meg	0.01\%	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.02 \mathrm{ppm} / \mathrm{V}$	1
USVD2 - B10M - 025-02	1400	100:1	9.9 Meg	100 K	10 Meg	0.025\%	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.02 \mathrm{ppm} / \mathrm{V}$	1
USVD2 - A20M - 010-02	2000	1,000: 1	19.98 Meg	20 K	20 Meg	0.01\%	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.02 \mathrm{ppm} / \mathrm{V}$	1
USVD2 - A20M - 025-02	2000	1,000 : 1	19.98 Meg	20 K	20 Meg	0.025\%	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.02 \mathrm{ppm} / \mathrm{v}$	1
USVD2 - B20M - 010-02	2000	100:1	19.8 Meg	200 K	20 Meg	0.01\%	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.02 \mathrm{ppm} / \mathrm{V}$	1
USVD2 - B20M - 025-02	2000	100:1	19.8 Meg	200 K	20 Meg	0.025\%	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.02 \mathrm{ppm} / \mathrm{V}$	1
HVD5 - A10M - 050-05	1500	1,000 : 1	9.99 Meg	10 K	10 Meg	0.05\%	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.02 \mathrm{ppm} / \mathrm{V}$	2
HVD5-B10M - 050-05	1500	100:1	9.9 Meg	100 K	10 Meg	0.05\%	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.02 \mathrm{ppm} / \mathrm{V}$	2
HVD5 - A20M - 050-05	2500	1,000 : 1	19.98 Meg	20 K	20 Meg	0.05\%	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.02 \mathrm{ppm} / \mathrm{V}$	2
HVD5 - B20M - 050-05	2500	100:1	19.8 Meg	200 K	20 Meg	0.05\%	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.02 \mathrm{ppm} / \mathrm{V}$	2
HVD5 - A50M - 050-05	5000	1,000 : 1	49.95 Meg	50 K	50 Meg	0.05\%	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.04 \mathrm{ppm} / \mathrm{V}$	2
HVD5-B50M - 050-05	5000	100: 1	49.5 Meg	500 K	50 Meg	0.05\%	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.04 \mathrm{ppm} / \mathrm{V}$	2

Specifications:

Absolute Tolerance: $\pm 0.10 \%$ for all resistors, measured at $+23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$.

Ratio Tolerance (RT : R2): See table.
Ratio Tolerance measured at $+23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, with 100 volts DC applied to the divider.

Absolute TC: USVD2: $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, HVD5: $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, referenced to $+25^{\circ} \mathrm{C}, \Delta \mathrm{R}$ taken at $-40^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$.

Ratio Temperature Coefficient (RT : R2): See table. Ratio Temperature Coefficient from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Ratio Voltage Coefficient (RT : R2): See table.
Maximum Ratio V.C. measured at 10% of Vmax.
to 100% of Vmax.
Voltage Rating: Maximum voltage (volts DC) applied to RT = (R1 + R2). See table.

Load Life Stability: Ratio stability with maximum continuous operating voltage applied to the divider for 1000 hours at $+85^{\circ} \mathrm{C}$, ratio change 0.02% max.

Overvoltage: 1.5 times rated voltage for 5 seconds, ratio change 0.02% max.
Thermal Shock: Mil-Std-202, Method 107, Cond. A, except minimum temperature is $-40^{\circ} \mathrm{C}$, ratio change 0.02\% max.

Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Custom Type USVD and Type HVD

Voltage Dividers: For high quantity applications (greater than 1000 per year) these voltage dividers can be produced with custom voltage division ratios and ratio specifications that optimize the performance and the cost for your application.

Applications Engineering
17271 North Umpqua Hwy.
Roseburg, Oregon 97470-9422
Phone: (541) 496-0700
Fax: (541) 496-0408
e-mail: caddock@caddock.com•web: www.caddock.com For Caddock Distributors listed by country see caddock.com/contact/dist.html

