# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



# FMC XM101 LVDS QSE Card User Guide

UG538 (v1.1) September 24, 2010





Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

# **Revision History**

The following table shows the revision history for this document.

| Date     | Version | Revision                                   |
|----------|---------|--------------------------------------------|
| 03/30/10 | 1.0     | Initial Xilinx release.                    |
| 09/24/10 | 1.1     | Updated note about FMC cards in Table 1-1. |

# Table of Contents

| Revision History                                     | ••• | <br>•••• | ••• | . 2 |
|------------------------------------------------------|-----|----------|-----|-----|
| Preface: About This Guide                            |     |          |     |     |
| Guide Contents                                       |     | <br>     |     | . 5 |
| Additional Documentation                             |     | <br>     |     | . 5 |
| Additional Support Resources                         | ••• | <br>•••  | ••• | . 5 |
| Chapter 1: XM101                                     |     |          |     |     |
| Overview                                             |     | <br>     |     | . 7 |
| Quick Start                                          |     | <br>     |     | . 7 |
| System Requirements                                  |     |          |     |     |
| Hardware                                             |     | <br>     |     |     |
| Software                                             |     |          |     |     |
| Package Contents                                     |     |          |     |     |
| Necessary Equipment                                  |     |          |     |     |
| System Setup                                         |     |          |     |     |
| Technical Support                                    |     |          |     |     |
| XM101 Board Technical Description                    |     |          |     |     |
| Detailed Description                                 |     |          |     |     |
| 1. VITA 57.1 FMC HPC Connector J1                    |     |          |     |     |
| 2. Samtec QSE Connectors   3. PCA9543 IIC Bus Switch |     |          |     |     |
| 4. Silicon Labs Si570 Clock Sources                  |     |          |     |     |
| 5. SMA Clock Connections                             |     |          |     |     |
| 6. M24C02 2 Kb IIC EEPROM                            |     |          |     |     |
|                                                      |     | <br>     |     |     |



Preface

# About This Guide

This document describes the FPGA Mezzanine Card (FMC) XM101 LVDS QSE card, referred to as the *XM101* in this guide. Xilinx® supported evaluation (carrier) boards are referred to simply as *boards* in this guide.

## **Guide Contents**

This manual contains the following chapter:

• Chapter 1, XM101.

# **Additional Documentation**

Prior to using the XM101, users should be familiar with Xilinx resources. See the following locations for additional documentation on Xilinx tools and solutions:

- ISE® Design Suite: <u>www.xilinx.com/ise</u>
- Answer Browser: <u>www.xilinx.com/support</u>
- Intellectual Property: <u>www.xilinx.com/ipcenter</u>

Information about the latest VITA 57 FMC Specification is located at:

<u>www.vita.com/fmc.html</u>

The XM101 can be used with Xilinx FMC high pin count (HPC) boards and, with limited functionality, FMC low pin count (LPC) boards. Board documentation, schematics and PCB design files are available at <a href="http://www.xilinx.com/fmc">www.xilinx.com/fmc</a>.

# **Additional Support Resources**

To find additional documentation, see the Xilinx website at:

www.xilinx.com/support/documentation/index.htm

To search the Answer Database of silicon, software, and IP questions and answers, or to create a technical support WebCase, see the Xilinx website at:

www.xilinx.com/support/mysupport.htm



# Chapter 1

# XM101

## **Overview**

This document describes the FPGA Mezzanine Card (FMC) XM101 LVDS QSE card, referred to as the *XM101* in this guide. A Quick Start section and XM101 Board Technical Description are combined within this document.

# **Quick Start**

#### System Requirements

#### Hardware

Table 1-1 details the board validated to support the XM101. The ML605 board provides one FMC high pin count (HPC) (J64) and one FMC low pin count (LPC) (J63) connector interface. The XM101 connector must be installed on the HPC J64 connector of the ML605 board to have full functionality, as shown in Figure 1-1, page 9.

#### Table 1-1: FMC Supported Boards

| Xilinx Platform                    | Part Number   | FMC HPC<br>Connector | FMC LPC<br>Connector |
|------------------------------------|---------------|----------------------|----------------------|
| Virtex-6 FPGA ML605 Evaluation Kit | EK-V6-ML605-G | J64                  | J63                  |

#### Notes:

While every effort has been made to comply with the *FPGA Mezzanine Card Specification*, Xilinx cannot claim nor assume full compliance with the FMC/VITA-57-1 specification. Consequently, Xilinx cannot claim nor support the usage of the XM101 on any other FMC (VITA-57.1) board.

Xilinx FMC cards are generally designed to implement expanded functionality for supported Xilinx evaluation boards (SP601, SP605, or ML605) and thus might exceed the FMC card outline dimensions discussed in the Single Width FMC Module Mechanical section of the FMC/VITA-57-1 specification. Therefore, Xilinx FMC cards might not physically fit in a non-Xilinx evaluation board environment.

The XM101 can work on LPC FMC interfaces, but with limited functionality. Xilinx boards containing LPC connectors are supported as follows:

- ML605 J63 LA[00:33], CLK0\_M2C\_P/N (Si570 U1), CLK1\_M2C\_P/N (SMA J2/J3)
- SP605 J2 LA[00:33], CLK0\_M2C\_P/N (Si570 U1), CLK1\_M2C\_P/N (SMA J2/J3)
- SP601 J1 LA[00:33], CLK0\_M2C\_P/N (Si570 U1), CLK1\_M2C\_P/N (SMA J2/J3)

#### Software

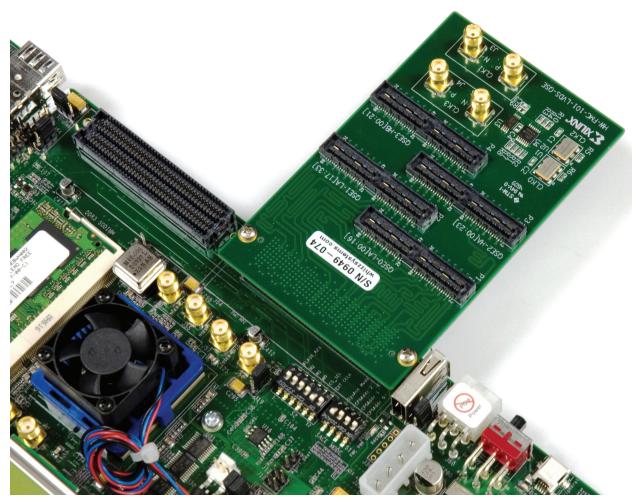
Example designs that use this hardware are not provided.

## **Package Contents**

The following items are included in the XM101 shipment:

- XM101 card
- Four (4) mounting screws
- Two (2) standoffs
- One (1) Samtec EQDP-028-12.00-TEU-TED-1 28-pair 12 inch loopback cable
- Welcome letter

#### **Necessary Equipment**


- Small Phillips screwdriver to secure the XM101 to the board
- PC with Internet access to download documentation, board files, and schematics

#### System Setup

Complete the following steps to install the XM101 to a Xilinx board. For additional information on Xilinx boards, refer to the particular board's user guide. See Additional Documentation, page 5.

- 1. Turn off the ML605 board's DC power switch and disconnect its input power source.
- 2. Remove the XM101 from the electrostatic device (ESD) bag.
- 3. Using a small Phillips screwdriver, remove the two screws from the bottom side of the two standoffs on the XM101.
- 4. Install the XM101 to the ML605 FMC HPC connector J64. The XM101 hangs off the edge of the ML605 board as shown in Figure 1-1, page 9.
- 5. Turn the ML605 and attached XM101 board over such that the ML605 FPGA is facing the table. Install two screws from the bottom side of ML605 board's FMC HPC mounting holes into the two standoffs attached to the XM101. Hand tighten the two mounting screws to the bottom of the board.
- 6. Turn the ML605 and attached XM101 boards over such that the Xilinx FPGA is visible.
- 7. Connect the input power source to the ML605 board. Turn the ML605 board power input switch to ON.

The system is now ready for use.



UG538\_01\_011210

*Figure 1-1:* Installation of XM101 to ML605 Board FMC HPC Connector

### **Technical Support**

Xilinx offers technical support for this product *only* when used in conjunction with boards listed in Table 1-1. For assistance with the XM101 and other Xilinx boards, contact Xilinx for technical support at <u>www.xilinx.com/support</u>.



# XM101 Board Technical Description

Figure 1-2 shows a block diagram of the XM101.

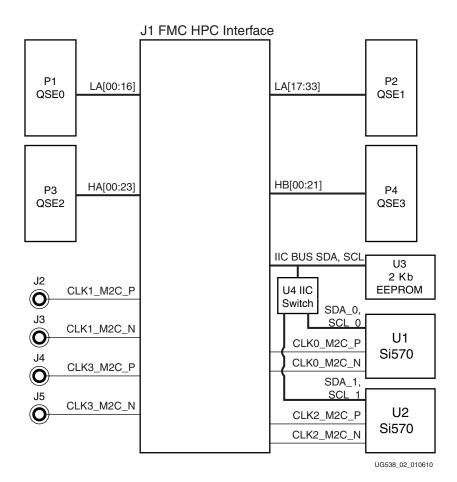
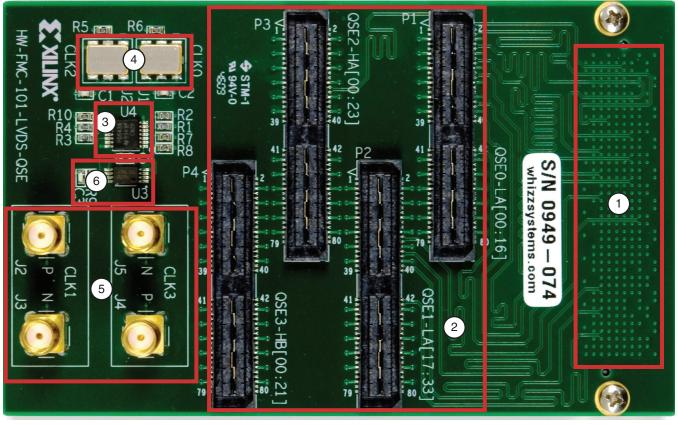



Figure 1-2: XM101 Block Diagram

The XM101 provides four Samtec QSE family connectors which break out a subset of the FMC HPC signal set, as shown in Detailed Description, page 11.

The FMC HPC signals are connected as length matched pairs to the QSE connectors. XM101 board users may loop back these pairs using the kit Samtec loopback cable, or create their own unique mezzanine board to plug onto the QSE connectors.


Two Silicon Laboratories Si570 serial IIC bus reprogrammable LVDS clock chips are available.

The Si570 components are connected to an IIC bus switch. The bus switch component connects to the main IIC bus implemented in the FMC HPC interface, enabling the board's FPGA to program the clock circuitry on the XM101.

A 2-Kb serial IIC EEPROM is also connected to the IIC interface of the board, providing non-volatile storage.

## **Detailed Description**

The numbered features in Figure 1-3 correlate to the features and notes listed in Table 1-2, page 12. For full functionality, the XM101 must be installed on a board FMC connector supporting high pin count interfaces.



UG538\_03\_01121

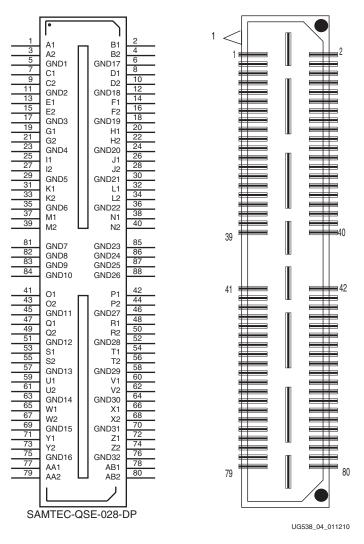
Figure 1-3: XM101 Features

| Number | Feature                                          | Notes                                                                                                                                                                                                                                                                 | Schematic<br>Page |
|--------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1      | VITA 57.1 FMC<br>HPC connector                   | J1: 80 signal pairs comprised of LA[00:33],<br>HA[00:23] and HB[00:21], four clock pairs, and<br>the IIC bus SDA, SCL. The connector is mounted<br>on the bottom side of the card.                                                                                    | 3 - 6             |
| 2      | Samtec QSE<br>Connectors                         | Connector as follows: PLUSEULAUU.16LP/                                                                                                                                                                                                                                |                   |
| 3      | PCA9543 IIC<br>Bus Switch                        | U4: IIC bus switch is connected to the main FMC<br>HPC IIC bus SDA and SCL signals. This<br>component can switch its input IIC bus to one of<br>two backside IIC bus connections. Each of the<br>two Si570 clock chips resides on one of these<br>backside IIC buses. |                   |
| 4      | Silicon Labs<br>Si570<br>Programmable<br>XO/VCXO | U1, U2: Silicon Labs Si570 IIC serial bus<br>programmable clock source devices with<br>frequency range 10 MHz - 810 MHz. U1 drives<br>signals CLK0_M2C_P/N; U2 drives<br>CLK2_M2C_P/N                                                                                 | 8                 |
| 5      | SMA Clock<br>Connections                         | SMA pair J2 and J3 are connected to<br>CLK1_M2C_P and N, respectively; SMA pair J4<br>and J5 are connected to CLK3_M2C_P and N,<br>respectively.                                                                                                                      | 8                 |
| 6      | M24C02 2Kb IIC<br>EEPROM                         | U3: IIC compatible electrically erasable<br>programmable memory (EEPROM) with 2 Kb<br>(256 bytes) of non-volatile storage.                                                                                                                                            | 8                 |

Table 1-2: XM101 Features

#### 1. VITA 57.1 FMC HPC Connector J1

This connector interfaces to the board containing the Xilinx FPGA and mating FMC connector. The XM101 uses Samtec FMC HPC connector part number ASP-134488-01.


See Xilinx board user guides and schematics for a description of features provided by HPC interfaces contained on the board, including power supply specifications, FPGA banking connectivity, and FPGA pin assignments.

For ML605 LPC and HPC interfaces, see <u>UG534</u> ML605 Hardware User Guide

See the *VITA57.1 Specification* at <u>www.vita.com/fmc.html</u> for additional information on FMC.

#### 2. Samtec QSE Connectors

Four Samtec QSE-028-01-L-D-DP-A low-profile, 28 differential pair connectors (P1–P4) are provided on the XM101 board (Figure 1-4). Traces from the FMC HPC connector to the QSE connectors are length-matched signal pairs.





FMC XM101 User Guide UG538 (v1.1) September 24, 2010

The P1–P4 QSE to J1 FMC HPC connectivity is show in Table 1-3 through Table 1-6, page 17.

Table 1-3: P1 QSE0 to J1 FMC HPC Connections

| P1 Odd Side |               |             | J1 FMC<br>Connector |   | P1 Even Side |               |             | J1 FMC<br>Connector |  |
|-------------|---------------|-------------|---------------------|---|--------------|---------------|-------------|---------------------|--|
| Net Name    | Pin<br>Number | Pin<br>Name | Pin<br>Number       |   | Net Name     | Pin<br>Number | Pin<br>Name | Pin<br>Number       |  |
| LA02_P      | 1             | A1          | H7                  |   | LA03_P       | 2             | B1          | G9                  |  |
| LA02_N      | 3             | A2          | H8                  |   | LA03_N       | 4             | B2          | G10                 |  |
| LA04_P      | 7             | C1          | H10                 |   | LA05_P       | 8             | D1          | D11                 |  |
| LA04_N      | 9             | C2          | H11                 |   | LA05_N       | 10            | D2          | D12                 |  |
| LA06_P      | 13            | E1          | C10                 |   | LA07_P       | 14            | F1          | H13                 |  |
| LA06_N      | 15            | E2          | C11                 |   | LA07_N       | 16            | F2          | H14                 |  |
| LA08_P      | 19            | G1          | G12                 |   | LA09_P       | 20            | H1          | D14                 |  |
| LA08_N      | 21            | G2          | G13                 |   | LA09_N       | 22            | H2          | D15                 |  |
| LA00_CC_P   | 25            | I1          | G6                  |   | LA01_CC_P    | 26            | J1          | D8                  |  |
| LA00_CC_N   | 27            | I2          | G7                  |   | LA01_CC_N    | 28            | J2          | D9                  |  |
| LA10_P      | 31            | K1          | C14                 |   | LA11_P       | 32            | L1          | H16                 |  |
| LA10_N      | 33            | K2          | C15                 |   | LA11_N       | 34            | L2          | H17                 |  |
| LA12_P      | 37            | M1          | G15                 |   | LA13_P       | 38            | N1          | D17                 |  |
| LA12_N      | 39            | M2          | G16                 |   | LA13_N       | 40            | N2          | D18                 |  |
| LA14_P      | 41            | O1          | C18                 |   | LA15_P       | 42            | P1          | H19                 |  |
| LA14_N      | 43            | O2          | C19                 | 1 | LA15_N       | 44            | P2          | H20                 |  |
| LA16_P      | 47            | Q1          | G18                 | 1 |              |               |             |                     |  |
| LA16_N      | 49            | Q2          | G19                 |   |              |               |             |                     |  |

| P         | 2 Odd Side    | 9        | J1 FMC<br>Connector | P2 Even Side |               |          | J1 FMC<br>Connecte |
|-----------|---------------|----------|---------------------|--------------|---------------|----------|--------------------|
| Net Name  | Pin<br>Number | Pin Name | Pin<br>Number       | Net Name     | Pin<br>Number | Pin Name | Pin Numb           |
| LA19_P    | 1             | A1       | H22                 | LA20_P       | 2             | B1       | G21                |
| LA19_N    | 3             | A2       | H23                 | LA20_N       | 4             | B2       | G22                |
| LA21_P    | 7             | C1       | H25                 | LA22_P       | 8             | D1       | G24                |
| LA21_N    | 9             | C2       | H26                 | LA22_N       | 10            | D2       | G25                |
| LA23_P    | 13            | E1       | D23                 | LA24_P       | 14            | F1       | H28                |
| LA23_N    | 15            | E2       | D24                 | LA24_N       | 16            | F2       | H29                |
| LA25_P    | 19            | G1       | G27                 | LA26_P       | 20            | H1       | D26                |
| LA25_N    | 21            | G2       | G28                 | LA26_N       | 22            | H2       | D27                |
| LA17_CC_P | 25            | I1       | D20                 | LA18_CC_P    | 26            | J1       | C22                |
| LA17_CC_N | 27            | I2       | D21                 | LA18_CC_N    | 28            | J2       | C23                |
| LA27_P    | 31            | K1       | C26                 | LA28_P       | 32            | L1       | H31                |
| LA27_N    | 33            | К2       | C27                 | LA28_N       | 34            | L2       | H32                |
| LA29_P    | 37            | M1       | G30                 | LA30_P       | 38            | N1       | H34                |
| LA29_N    | 39            | M2       | G31                 | LA30_N       | 40            | N2       | H35                |
| LA31_P    | 41            | O1       | G33                 | LA32_P       | 42            | P1       | H37                |
| LA31_N    | 43            | O2       | G34                 | LA32_N       | 44            | P2       | H38                |
| LA33_P    | 47            | Q1       | G36                 |              |               |          |                    |
| LA33_N    | 49            | Q2       | G37                 |              |               |          |                    |

#### Table 1-4: P2 QSE1 to J1 FMC HPC Connections

| P3 Odd Side |               |             | J1 FMC<br>Connector | P3 E      | P3 Even Side  |             |            |  |
|-------------|---------------|-------------|---------------------|-----------|---------------|-------------|------------|--|
| Net Name    | Pin<br>Number | Pin<br>Name | Pin Number          | Net Name  | Pin<br>Number | Pin<br>Name | Pin Number |  |
| HA02_P      | 1             | A1          | K7                  | HA03_P    | 2             | B1          | J6         |  |
| HA02_N      | 3             | A2          | K8                  | HA03_N    | 4             | B2          | J7         |  |
| HA04_P      | 7             | C1          | F7                  | HA05_P    | 8             | D1          | E6         |  |
| HA04_N      | 9             | C2          | F8                  | HA05_N    | 10            | D2          | E7         |  |
| HA06_P      | 13            | E1          | K10                 | HA07_P    | 14            | F1          | J9         |  |
| HA06_N      | 15            | E2          | K11                 | HA07_N    | 16            | F2          | J10        |  |
| HA08_P      | 19            | G1          | F10                 | HA09_P    | 20            | H1          | E9         |  |
| HA08_N      | 21            | G2          | F11                 | HA09_N    | 22            | H2          | E10        |  |
| HA00_CC_P   | 25            | I1          | F4                  | HA01_CC_P | 26            | J1          | E2         |  |
| HA00_CC_N   | 27            | I2          | F5                  | HA01_CC_N | 28            | J2          | E3         |  |
| HA10_P      | 31            | K1          | K13                 | HA11_P    | 32            | L1          | J12        |  |
| HA10_N      | 33            | K2          | K14                 | HA11_N    | 34            | L2          | J13        |  |
| HA12_P      | 37            | M1          | F13                 | HA13_P    | 38            | N1          | E12        |  |
| HA12_N      | 39            | M2          | F14                 | HA13_N    | 40            | N2          | E13        |  |
| HA14_P      | 41            | O1          | J15                 | HA15_P    | 42            | P1          | F16        |  |
| HA14_N      | 43            | O2          | J16                 | HA15_N    | 44            | P2          | F17        |  |
| HA16_P      | 47            | Q1          | E15                 | HA17_CC_P | 48            | R1          | K16        |  |
| HA16_N      | 49            | Q2          | E16                 | HA17_CC_N | 50            | R2          | K17        |  |
| HA18_P      | 53            | S1          | J18                 | HA19_P    | 54            | T1          | F19        |  |
| HA18_N      | 55            | S2          | J19                 | HA19_N    | 56            | T2          | F20        |  |
| HA20_P      | 59            | U1          | E18                 | HA21_P    | 60            | V1          | K19        |  |
| HA20_N      | 61            | U2          | E19                 | HA21_N    | 62            | V2          | K20        |  |
| HA22_P      | 65            | W1          | J21                 | HA23_P    | 66            | X1          | K22        |  |
| HA22_N      | 67            | W2          | J22                 | HA23_N    | 68            | X2          | K23        |  |

#### Table 1-5: P3 QSE2 to J1 FMC HPC Connections

| P4 Odd Side |               |             | J1 FMC Connector   | P4 E\     | P4 Even Side  |             |                    |  |
|-------------|---------------|-------------|--------------------|-----------|---------------|-------------|--------------------|--|
| Net Name    | Pin<br>Number | Pin<br>Name | Pin Number         | Net Name  | Pin<br>Number | Pin<br>Name | Pin Number         |  |
| HB01_P      | 1             | A1          | J24                | HB02_P    | 2             | B1          | F22                |  |
| HB01_N      | 3             | A2          | J25                | HB02_N    | 4             | B2          | F23                |  |
| HB03_P      | 7             | C1          | E21                | HB04_P    | 8             | D1          | F25                |  |
| HB03_N      | 9             | C2          | E22                | HB04_N    | 10            | D2          | F26                |  |
| HB05_P      | 13            | E1          | E24                | HB07_P    | 14            | F1          | J27                |  |
| HB05_N      | 15            | E2          | E25                | HB07_N    | 16            | F2          | J28                |  |
| HB08_P      | 19            | G1          | F28                | HB09_P    | 20            | H1          | E27                |  |
| HB08_N      | 21            | G2          | F29                | HB09_N    | 22            | H2          | E28                |  |
| HB00_CC_P   | 25            | I1          | K25                | HB06_CC_P | 26            | J1          | K28                |  |
| HB00_CC_N   | 27            | I2          | K26                | HB06_CC_N | 28            | J2          | K29                |  |
| HB10_P      | 31            | K1          | K31                | HB11_P    | 32            | L1          | J30                |  |
| HB10_N      | 33            | K2          | K32                | HB11_N    | 34            | L2          | J31                |  |
| HB12_P      | 37            | M1          | F31                | HB13_P    | 38            | N1          | E30                |  |
| HB12_N      | 39            | M2          | F32                | HB13_N    | 40            | N2          | E31                |  |
| HB14_P      | 41            | O1          | K34                | HB15_P    | 42            | P1          | J33                |  |
| HB14_N      | 43            | O2          | K35                | HB15_N    | 44            | P2          | J34                |  |
| HB16_P      | 47            | Q1          | F34                | HB17_CC_P | 48            | R1          | K37                |  |
| HB16_N      | 49            | Q2          | F35                | HB17_CC_N | 50            | R2          | K38                |  |
| HB18_P      | 53            | S1          | J36                | HB19_P    | 54            | T1          | E33                |  |
| HB18_N      | 55            | S2          | J37                | HB19_N    | 56            | T2          | E34                |  |
| HB20_P      | 59            | U1          | F37 <sup>(1)</sup> | HB21_P    | 60            | V1          | E36 <sup>(1)</sup> |  |
| HB20_N      | 61            | U2          | F38 <sup>(1)</sup> | HB21_N    | 62            | V2          | E37 <sup>(1)</sup> |  |

#### Table 1-6: P4 QSE3 QSE3 to J1 FMC HPC Connections

#### Notes:

1. The ML605 board FMC HPC connector J64 does not support these signals

#### 3. PCA9543 IIC Bus Switch

The XM101 IIC bus hosts two components, U3 M24C02 2Kb EEPROM and U4 IIC bus switch (Figure 1-5).

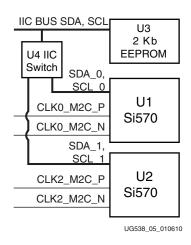



Figure 1-5: XM101 IIC Bus Topology

Table 1-7 shows the addresses for the IIC components.

| Component    | Address           |
|--------------|-------------------|
| M24C02 (U3)  | 1010_0_GA0_GA1_RW |
| PCA9543 (U4) | 1110_0_GA0_GA1_RW |
| SI570 (U1)   | 1011_1_0_1_RW     |
| SI570 (U2)   | 1011_1_0_1_RW     |

The IIC bus switch provides bidirectional bus isolation and isolates the fixed addresses of the two Si570 devices from the main IIC bus of the board. The upstream side of the switch connects to the FMC HPC connector. The downstream switch ports interface to the two Silicon Laboratories clock integrated circuits.

The PCA9543 is a bidirectional translating switch, controlled by the upstream board side IIC bus. The PCA9543 must be initialized prior to attempting to communicate with the two Si570 clock circuits on the downstream IIC buses.

The PCA9543 component data sheet contains detailed application information and is available online at <u>www.nxp.com</u>.

The IIC address of this component is controlled by a combination of the board interface and chip enable connections to the component inputs on the XM101. Signals GA0 and GA1 from the board are connected to the two address inputs A1 and A0 of the PCA9543 component. Xilinx boards provide GA0 and GA1 signal strapping to 3.3V and GND signals creating different A0 and A1 address decodes on the PCA9543.

The IIC memory addressing protocol requires a bus master to initiate communication to a peripheral device using a start condition followed by a device select code. The device select code consists of a 4 bit Device Type Identifier and a 3-bit Address (A2, A1 and A0). A2 is internally grounded inside the PCA9543. Bit 0 is used to indicate read/write. The Device Type Identifier for the PCA9543 is 1110 binary. Table 1-8, page 19 defines the generic

PCA9543 Device Select Code as well as specific Device Code Select address when the XM101 is connected to a Xilinx board as defined in Table 1-1, page 7.

| Bit 7:4 Device<br>Type Identifier | Bit 3 | Bit 2 | Bit 1 | Bit 0<br>LSB | Description                                 |
|-----------------------------------|-------|-------|-------|--------------|---------------------------------------------|
| 1110                              | 0     | GA0   | GA1   | Read/Write   | Connected to mezzanine FMC<br>HPC interface |

Table 1-8: PCA9543 IIC Switch Device Select Code

The PCA9543 has a Control register which must be initialized by the IIC bus master to enable the channel 0 downstream IIC port. Channel 0 must be enabled prior to attempting to communicate with the two downstream programmable clock devices on the XM101.

After the IIC bus master enables PCA9543 channel 0 downstream IIC bus, the bus master can communicate directly with either Si570 component without further interaction with the Control register. The Control Register can be read by the IIC bus master. Table 11 defines the PCA9543 Control Register.

Table 1-9: PCA9543 Control Register

| Bit 7:4 | Bit 3:2 | Bit 1                              | Bit 0                              |
|---------|---------|------------------------------------|------------------------------------|
| XXXX    | XX      | Channel 1<br>Enable <sup>(1)</sup> | Channel 0<br>Enable <sup>(2)</sup> |

#### Notes:

- 1. Channel 1 must be set to a logic 1 state by IIC bus master prior to attempting to communicate with the Si570 U2.
- 2. Channel 0 must be set to a logic 1 state by IIC bus master prior to attempting to communicate with the Si570 U1.

The two downstream IIC devices connected to the PCA9543 are at the same IIC address:

- Si570 U1 IIC address is at 0x5D, PCA9543 control register bits CR[1:0] = 01
- Si570 U2 IIC address is at 0x5D, PCA9543 control register bits CR[1:0] = 10

The U4 PCA9543 IIC bus switch to J1 FMC HPC connections are shown in Table 1-10.

Table 1-10: IIC Bus Switch to J1 FMC HPC Connections

| U4 PCA9543 I | J1 FMC<br>Connector |            |
|--------------|---------------------|------------|
| Net Name     | Pin Number          | Pin Number |
| SDA          | U4.13               | C31        |
| SCL          | U4.12               | C30        |

#### 4. Silicon Labs Si570 Clock Sources

The Silicon Labs Si570 serial IIC bus programmable clock source provides a low-jitter clock with a user-programmable output frequency from 10 to 810 MHz.

U1 and U2 Si570 are located at IIC address 0x5D and are accessed through the U4 PCA9543 IIC bus switch as described in 3. PCA9543 IIC Bus Switch.

U1 and U2 Si570 components are factory programmed with parameters in Table 1-11.

Table 1-11: Characteristics of Si570 Component

| Si570 Characteristic        | XM101       |
|-----------------------------|-------------|
| Output Format               | LVDS        |
| Output Enable Polarity      | High        |
| Temperature Stability       | 50 ppm      |
| Frequency Range             | 10-810 MHz  |
| Six-Digit Startup Frequency | 156.250 MHz |
| Power Supply                | 3.3V        |
| IIC Address                 | x5D         |

For additional information on this component, including reprogramming the clock frequency through the IIC serial bus interface, consult the manufacturer's data sheet at: www.silabs.com.

The U1 and U2 Si570 output clocks to J1 FMC HPC connections are shown in Table 1-12.

| Sit        | J1 FMC<br>Connector |            |
|------------|---------------------|------------|
| Net Name   | Pin Number          | Pin Number |
| CLK0_M2C_P | U1.4                | H4         |
| CLK0_M2C_N | U1.5                | H5         |
| CLK2_M2C_P | U2.4                | K4         |
| CLK2_M2C_N | U2.5                | K5         |

Table 1-12: Si570 to FMC HPC Connections

#### 5. SMA Clock Connections

Four SMA connectors (J2 - J5) are provided on the XM101 board. The SMA to J1 FMC HPC connections are shown in Table 1-13.

| SI         | ЛА         | J1 FMC<br>Connector |
|------------|------------|---------------------|
| Net Name   | Pin Number | Pin Number          |
| CLK1_M2C_P | J2.1       | G2                  |
| CLK1_M2C_N | J3.1       | G3                  |
| CLK3_M2C_P | J4.1       | J2                  |
| CLK3_M2C_N | J5.1       | J3                  |

Table 1-13: SMA to FMC HPC Connections

### 6. M24C02 2 Kb IIC EEPROM

An STMicroelectronics M24C02 2 Kb serial IIC bus EEPROM (U3) component provides a small amount of non-volatile memory storage on the XM101. The IIC interface is connected directly to the board's IIC interface as shown in Figure 1-2, page 10.

The IIC address of this component is controlled by a combination of the board's interface and chip enable connections to the component inputs on the XM101. Signals GA0 and GA1 from the board are connected to the chip enable inputs of the M24C02 component enables E0 and E1. Xilinx boards provide GA0 and GA1 signal strapping to 3.3V and GND signals creating different E0 and E1 chip enable decodes on the E1 and E0 inputs of the EEPROM.

The IIC memory addressing protocol requires a bus master to initiate communication to a peripheral device using a start condition followed by a device select code. The device select code consists of a 4 bit Device Type Identifier and a 3-bit Chip Enable Address (E2, E1 and E0). Bit 0 is used to indicate read/write. The Device Type Identifier for the EEPROM is 1010 binary. Table 1-14 defines the generic EEPROM Device Select Code as well as specific Device Code Select addresses of the EEPROM when the XM101 is connected to a Xilinx board defined in Table 1-1, page 7.

| Bit 7:4 Device<br>Type Identifier | Bit 3 | Bit 2 | Bit 1 | Bit 0 LSB  | Description                              |
|-----------------------------------|-------|-------|-------|------------|------------------------------------------|
| 1010                              | 0     | GA0   | GA1   | Read/Write | Connected to mezzanine FMC HPC interface |

Table 1-14: EEPROM IIC Device Select Code

The M24C02 component data sheet is available online at <u>www.st.com</u>.

