

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Current Transducer HXS 20-NP/SP2

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

All Data are given with a $R_1 = 10 \text{ k}\Omega$

$I_{PN} = 5 - 10 - 20 A$

Electrical data

I _{PN}	Primary nominal current rms	± 20	Α
I _{PM}	Primary current, measuring range	± 60	Α
V _{OUT}	Output voltage (Analog) @ I _P	$V_{REF} \pm (0.625)$	$(-1)^{-1}$
	$I_{\rm p} = 0$	$V_{REF} \pm 0.013$	25 V
\mathbf{V}_{REF}	Reference voltage 1) - Output voltage	2.5 ± 0.025	
	V _{REF} Output impedance	typ. 200	Ω
	V _{BEF} Load impedance	≥ 200	kΩ
$\mathbf{R}_{\scriptscriptstyle\perp}$	Load resistance	≥ 2	kΩ
R _{OUT}	Output internal resistance	< 10	Ω
C,	Capacitive loading	< 1	μF
V c	Supply voltage (± 5 %)	5	V
I c	Current consumption @ $V_c = 5 \text{ V}$	22	mA

Accuracy - Dynamic performance data

X	Accuracy 2 @ I_{PN} , $T_A = 25^{\circ}C$	≤ ± 1	% of I _{PN}
$\mathbf{\epsilon}_{\scriptscriptstyle extsf{L}}$	Linearity error 0 I _{PN}	\leq ± 0.5	% of I _{PN}
_	3 x I _{PN}	≤ ± 1	% of I _{PN}
TCV _{OE}	Temperature coefficient of $V_{OE} @ I_P = 0$	$\leq \pm 0.4$	mV/K
TCV _{REF}	Temperature coefficient of \mathbf{V}_{REF}	≤ ± 0.01	%/K
TCV_{OUT}/V_{RE}	Temperature coefficient of $\mathbf{V}_{OUT}/\mathbf{V}_{REF} @ \mathbf{I}_{P} = 0$	\leq ± 0.2	mV/K
TCV	Temperature coefficient of \mathbf{V}_{OUT}	≤±0.05%c	freading/K
V _{OM}	Magnetic offset voltage @ $I_p = 0$,		
	after an overload of 3 x I_{PN}	$< \pm 0.7$	% of $I_{_{\mathrm{PN}}}$
t _{ra}	Reaction time @ 10 % of I _{PN}	< 3	μs
t ,	Response time to 90 % of I _{PN} step	< 5	μs
di/dt	di/dt accurately followed	> 50	A/μs
\mathbf{V}_{no}	Output voltage noise (DC10 kHz)	< 20	mVpp
	(DC 1 MHz)	< 40	mVpp
BW	Frequency bandwidth (-3 dB) 3)	DC 50	kHz

General data

T _A	Ambient operating temperature	- 40 + 105	°C
T _s	Ambient storage temperature	- 40 + 105	°C
m	Mass	10	g
Standards		EN 50178: 1997	,

Notes : $^{1)}$ It is possible to overdrive \mathbf{V}_{REF} with an external reference voltage between 2 - 2.8 V providing its ability to sink or source approximately 2.5 mA.

- ²⁾Excluding offset and hysteresis.
- ³⁾Small signal only to avoid excessive heatings of the magnetic core.

Features

- Hall effect measuring principle
- Multirange current transducer through PCB pattern lay-out
- Galvanic isolation between primary and secondary circuit
- Isolation test voltage 3500V
- Low power consumption
- Extremely low profile, < 11mm
- Single power supply +5V
- Fixed offset & gain
- Insulated plastic case recognized according to UL 94-V0.

Special Feature

• **T**_∆ = -40 .. +105 °C

Advantages

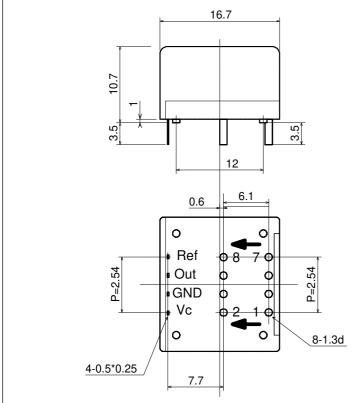
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.
- Internal & external reference

Applications

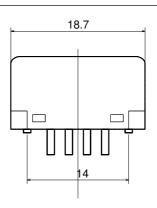
- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

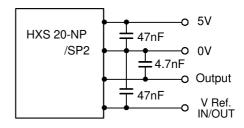
Application Domain

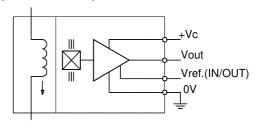
Industrial



Current Transducer HXS 20-NP/SP2


Iso	lation characteristics		
V _b	Rated isolation voltage rms with IEC 61010-1 standards and following conditions - Single insulation - Over voltage category III - Pollution degree 2 - Heterogeneous field	150	V rms
V _b	Rated isolation voltage rms with EN 50178 standards and following conditions - Reinforced insulation - Over voltage category III - Pollution degree 2 - Heterogeneous field	300	V rms
V _d dCp dCl CTI	Rms voltage for AC isolation test, 50 Hz, 1 min Creepage distance Clearance distance Comparative tracking index (Group I)	3.5 > 5.5 > 5.5 > 600	kV m m m m


Dimensions HXS 20-NP/SP2 (in mm. 1 mm = 0.0394 inch)


Number of	Primary		Primary	Primary insertion	Recommended
primary turns		maximum	resistance	inductance	PCB connections
	I _{PN} [A]	I _P [A]	R _P [m ohm]	L _P [μH]	
1	20	60	0.05	0.025	IN 1 3 5 7 O-O-O-O O-O-O-O 2 4 6 8 OUT
2	10	30	0.2	0.1	IN 1 3 5 7 0-0 0-0 0-0 0-0 2 4 6 8 OUT
4	5	15	1	0.4	IN 1 3 5 7 0 0 0 0 0 0 0 2 4 6 8 OUT

Required connection circuit

Operation Principle

Mechanical characteristics

• General tolerance

• Fastening & connection of primary jumper Recommended PCB hole

• V_{OLIT} is positive when I_P flows from terminals 1, 3, 5, 7 (IN) to

• Temperature of the primary conductors should not exceed

 Fastening & connection of secondary Recommended PCB hole

terminals 2, 4, 6, 8 (OUT).

± 0.2 mm

8 pins Ø 1.3 mm

Ø 1.5 mm

Ø 0.7 mm

4 pins 0.5 x 0.25

Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used. Main supply must be able to be disconnected.

Page 3/3

Remarks

120°C.