

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Current Transducer HXS 20-NP

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

All data are given with $R_1 = 10 \text{ k}\Omega$

Electrical data Primary nominal rms current ±20 Α $I_{\scriptscriptstyle{\mathsf{PN}}}$ Α Primary current, measuring range ±60 $I_{\scriptscriptstyle{\mathsf{PM}}}$ V/I_{PN} G_{TH} Theoretical sensitivity 0.625 $V_{\rm out}$ Output voltage (Analog) @ I_D $V_{\rm OF} \pm (0.625 \cdot I_{\rm P}/I_{\rm PN}) V$ Reference voltage 1) Output voltage 2.5 ±0.025 Output impedance Typ. 200 Ω Load impedance ≥200 kΩ Load resistance ≥2 kΩ Output internal resistance <5 Ω Capacitive loading (±20 %) =4.7 nF Supply voltage (±5 %) 2) 5 ٧ Current consumption @ U_c = 5 V 19 mΑ

Accuracy - Dynamic performance data

X	Accuracy $^{3)}$ @ I_{PN} , T_{Δ} = 25 $^{\circ}$ C	≤±1	%
$\varepsilon_{_{_{\rm I}}}$	Linearity error $0 I_{PN}$	≤±0.5	%
_	$03 \times I_{PN}$	≤±1	%
TCV_{OF}	Temperature of coefficient of V_{OE} (+25 105 °C)	≤±0.4	mV/K
	(-40 +25 °C)	≤±0.525	mV/K
TCV_{ref}	Temperature of coefficient of V_{ref} (+25 105 °C)	≤±0.01	%/K
	(-40 +25 °C)	≤±0.015	%/K
TCV _{OE} /V _n	_e Temperature of coefficient of V_{OF}/V_{ref}	≤±0.15	mV/K
TCG	Temperature of coefficient of G	≤±0.05 % of re	ading /K
$V_{_{ m OF}}$	Electrical offset voltage @ $I_P = 0$, $T_A = 25$ °C	$V_{\rm ref} \pm 0.0125$	V
V_{om}	Magnetic offset voltage @ $I_P = 0$		
	after an overload of 3 \times I_{PN}	<±0.7	%
V_{no}	Output voltage noise (DC 10 kHz)	<20	mVpp
	(DC 1 MHz)	<40	mVpp
$t_{\rm ra}$	Reaction time to 10 % of I_{PN} step	<3	μs
t_r	Step response time to 90 % of I_{PN} step	<5	μs
di/dt	di/dt accurately followed	>50	A/µs
BW	Frequency bandwidth (-3 dB) 4)	DC 50	kHz

Notes: 1) It is possible to overdrive V_{ref} with an external reference voltage between 1.5 - 2.8 V providing its ability to sink or source approximately 5 m^{Δ}

- 2) Maximum supply voltage (not operating) <6.5 V
- 3) Excluding offset and Magnetic offset voltage
- ⁴⁾ Small signal only to avoid excessive heatings of the magnetic core.

I_{PN} = 5, 10, 20 A

Features

- · Hall effect measuring principle
- Multirange current transducer through PCB pattern lay-out
- Galvanic separation between primary and secondary circuit
- Insulation test voltage 3500 V
- Extremely low profile <11 mm
- · Fixed offset & sensitivity
- Low power consumption
- Single power supply +5 V
- Insulating plastic case recognized according to UL 94-V0.

Advantages

- · Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference
- V_{ref} IN/OUT.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial.

Page 1/3

Current Transducer HXS 20-NP

G	General data			
$T_{_{\mathrm{A}}}$	Ambient operating temperature 1)	-40 +105	°C	
$T_{\rm s}$	Ambient storage temperature	-40 +105	°C	
m	Mass	10	g	
	Standards	EN 50178: 1997	7	

Note: 1) UL recognized with surrounding temperature until +85 °C.

Ins	Insulation coordination			
$U_{\rm d}$	Rms voltage for AC insulation test, 50 Hz, 1 min	3.5 Min	kV	
d_{Cn}	Creepage distance	>5.5	mm	
$oldsymbol{d}_{ extsf{CP}} \ oldsymbol{d}_{ extsf{CI}}$	Clearance	>5.5	mm	
CTI	Comparative Tracking Index (group I)	>600		

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

According to UL 508 standards and following conditions: Maximum voltage 600 V

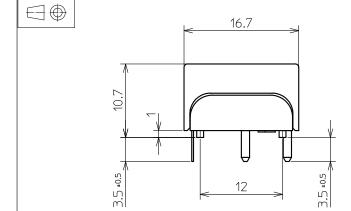
- Over voltage category OV 3
- Pollution degree PD2

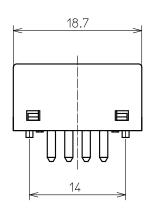
	EN 50178	IEC 61010-1
d _{Cp} , d _{Cl}	Rated insulation voltage	Nominal voltage
Basic insulation	600 V	600 V
Reinforced insulation	300 V	150 V

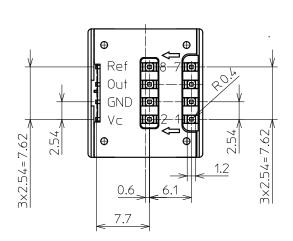
Safety

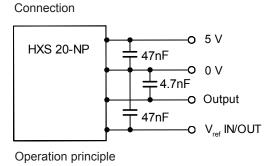
This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

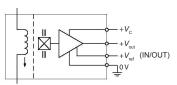
This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.


Caution, risk of electrical shock


When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected.




Dimensions HXS 20-NP (in mm)

Number of primary turns	Primary	current	Primary Primary insertio	Primary insertion	Recommended PCB connections		
	Nominal $I_{\scriptscriptstyle{\mathrm{PN}}}$ [A]	Maximum $I_{_{\mathrm{P}}}$ [A]	resistance $R_{_{\rm P}}$ [m Ω]	inductance L_{P} [μ H]	connections		
1	20	60	0.05	0.025	IN 1 3 5 7 0 0 0 0 0 0 0 0 0 2 4 6 8 OUT		
2	10	30	0.2	0.1	IN 1 3 5 7 0 0 0 0 0 0 0 0 0 2 4 6 8 OUT		
4	5	15	1	0.4	IN 1 3 5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

Mechanical characteristics

General tolerance

±0.2 mm

 Transducer fastening & connection of primary jumper

8 pins 1.2 × 1.2 mm (corner R 0.4 mm)

Transducer fastening & connection of secondary pin

4 pins 0.5 × 0.25 mm

Recommended PCB hole

Primary PCB hole

ø 1.5 mm

• Secondary PCB hole

ø 0.7 mm

Remarks

- V_{out} is positive when I_{P} flows from terminals 1,3, 5, 7 (IN) to terminals 2,4, 6, 8 (OUT).
- Temperature of the primary conductor should not exceed 120 °C.