imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IA82527 Serial Communications Controller—CAN Protocol Data Sheet

IA211080504-06

Page 1 of 58

Copyright © 2009 by Innovasic Semiconductor, Inc.

Published by Innovasic Semiconductor, Inc. 3737 Princeton Drive NE, Suite 130, Albuquerque, NM 87107

MILES[™] is a trademark Innovasic Semiconductor, Inc. Intel[®] is a registered trademark of Intel Corporation

IA211080504-06

http://www.Innovasic.com Customer Support: (888) 824-4184

Page 2 of 58

TABLE OF CONTENTS

1.	Introduction	6
	1.1 General Description	6
	1.2 Features	7
2.	Packaging, Pin Descriptions, and Physical Dimensions	8
	2.1 Packages and Pinouts	8
	2.1.1 PLCC Package	9
	2.1.2 PLCC Physical Dimensions	11
	2.1.3 PQFP Package	12
	2.1.4 PQFP Physical Dimensions	14
	2.2 Pin/Signal Descriptions	15
3.	Maximum Ratings, Thermal Characteristics, and DC Parameters	25
4.	Functional Description	
	4.1 Hardware Architecture	
	4.1.1 CAN Controller	29
	4.1.2 Message RAM	29
	4.1.3 I/O Ports	30
	4.1.4 Programmable Clock Output	30
	4.2 Address Map	30
	4.3 CAN Message Objects	30
5.	AC Specifications	
6.	Innovasic Part Number Cross-Reference	53
7.	Errata	54
	7.1 Summary	54
	7.2 Detail	54
8.	Revision History	57
9.	For Further Information	

LIST OF FIGURES

Figure 1. PLCC Package Diagram	9
Figure 2. PLCC Physical Dimensions	11
Figure 3. PQFP Package Diagram	12
Figure 4. PQFP Physical Dimensions	14
Figure 5. Functional Block Diagram	28
Figure 6. mosi/miso Connection	29
Figure 7. Mode 0 and Mode 1: General Bus Timing	36
Figure 8. Mode 0 and Mode 1: Ready Timing for Read Cycle	37
Figure 9. Mode 0 and Mode 1: Ready Timing for Write Cycle with No Write Pending	37
Figure 10. Mode 0 and Mode 1: Ready Timing for Write Cycle with Write Active	38
Figure 11. Mode 2: General Bus Timing	41
Figure 12. Mode 3: Asynchronous Operation, Read Cycle	44
Figure 13. Mode 3: Asynchronous Operation, Write Cycle	45
Figure 14. Mode 3: Synchronous Operation, Read Cycle Timing	48
Figure 15. Mode 3: Synchronous Operation, Write Cycle Timing	49
Figure 16. Serial Interface Mode: $icp = 0$ and $cp = 0$	52
Figure 17. Serial Interface Mode: icp = 1 and cp = 1	52

LIST OF TABLES

Table 1. PLCC Pin List	10
Table 2. PQFP Pin List	13
Table 3. Pin/Signal Descriptions	15
Table 4. Absolute Maximum Ratings	25
Table 5. Thermal Characteristics	25
Table 6. DC Parameters	26
Table 7. ISO Physical Layer DC Parameters	27
Table 8. Address Map	31
Table 9. Message Object Structure	
Table 10. Mode 0 and Mode 1: General Bus and Ready Timing for 5.0V Operation	34
Table 11. Mode 0 and Mode 1: General Bus and Ready Timing for 3.3V Operation	35
Table 12. Mode 2: General Bus Timing for 5.0V Operation	39
Table 13. Mode 2: General Bus Timing for 3.3V Operation	40
Table 14. Mode 3: Asynchronous Operation Timing for 5.0V Operation	42
Table 15. Mode 3: Asynchronous Operation Timing for 3.3V Operation	43
Table 16. Mode 3: Synchronous Operation Timing for 5.0V Operation	46
Table 17. Mode 3: Synchronous Operation Timing for 3.3V Operation	47
Table 18. Serial Interface Mode Timing for 5.0V Operation	50
Table 19. Serial Interface Mode Timing for 3.3V Operation	51
Table 20. Innovasic Part Number Cross-Reference.	53
Table 21. Revision History	57

1. Introduction

The Innovasic Semiconductor IA82527 Controller Area Network (CAN) Serial Communications Controller is a form, fit, and function replacement for the original Intel[®] 82527 Serial Communications Controller.

These devices are produced using Innovasic's Managed IC Lifetime Extension System (MILESTM). This cloning technology, which produces replacement ICs beyond simple emulations, ensures complete compatibility with the original device, including any "undocumented features." Additionally, MILESTM captures the clone design in such a way that production of the clone can continue even as silicon technology advances.

The IA82527 Serial Communications Controller replaces the obsolete Intel 82527 device, allowing users to retain existing board designs, software compilers/assemblers, and emulation tools, thereby avoiding expensive redesign efforts.

1.1 General Description

CAN protocol uses a multi-master CSMA/CR (Carrier Sense, Multiple Access with Collision Resolution) bus to transfer message objects between network nodes.

The IA82527 support CAN Specification 2.0 Part A and B, standard and extended message frames, and has the capability to transmit, receive, and perform message filtering on standard and extended message frames.

The IA82527 can store 15 message objects of 8-byte data length. Each message object can be configured as either transmit or receive except for message object 15, which is receive-only. Message object 15 also provides a special acceptance mask designed to filter message identifiers that are received.

The IA82527 also provides a programmable acceptance mask that allows users to globally mask any identifier bits of the incoming message. This global mask can be used for both standard and extended message frames.

The IA82527 is capable of operating at 5.0 or 3.3 volts. This datasheet discusses both modes of operation. Where applicable, characteristics specific to either 3.3 or 5.0 volt operation are identified separately throughout this datasheet.

The IA82527 is manufactured in a reliable 5-volt process technology and is available in 44-lead PLCC or PQFP RoHS packages for the automotive temperature range (-40°C to 125°C).

1.2 Features

The primary features of the IA82527 are as follows:

- CAN Protocol Support
 - Specification 2.0, Part A and Part B
 - Standard ID Data and Remote Frames
 - Extended ID Data and Remote Frames
- CAN Bus Interface
 - Configurable Input Comparator
 - Configurable Output Driver
 - Programmable Bit Rate
- Global Mask, Programmable
 - Standard Message Identifier
 - Extended Message Identifier
- Message Objects
 - 14 Transmit/Receive Buffers
 - 1 Double Buffered Receive Buffer with Programmable Mask
- Flexible Status Interface
- CPU Interface Options
 - 16-Bit Multiplexed Intel Architecture
 - 8-Bit Multiplexed Intel Architecture
 - 8-Bit Multiplexed Non-Intel Architecture
 - 8-Bit Non-Multiplexed Non-Intel Architecture
 - Serial (SPI)
- I/O Ports (2)
 - 8-Bit
 - Bidirectional
- Flexible Interrupt Structure
- Programmable Clock Output

A detailed description of the IA82527, including the features listed above, is provided in Chapter 4, Functional Description.

2. Packaging, Pin Descriptions, and Physical Dimensions

2.1 Packages and Pinouts

The Innovasic Semiconductor IA82527 CAN Serial Communications Controller is available in the following RoHS packages:

- 44-Pin Plastic Leaded Chip Carrier (PLCC), equivalent to original Intel PLCC package
- 44-Pin Plastic Quad Flat Pack (PQFP), equivalent to original Intel QFP package

2.1.1 PLCC Package

The pinout for the PLCC Package is as shown in Figure 1. The corresponding pinout is provided in Table 1.

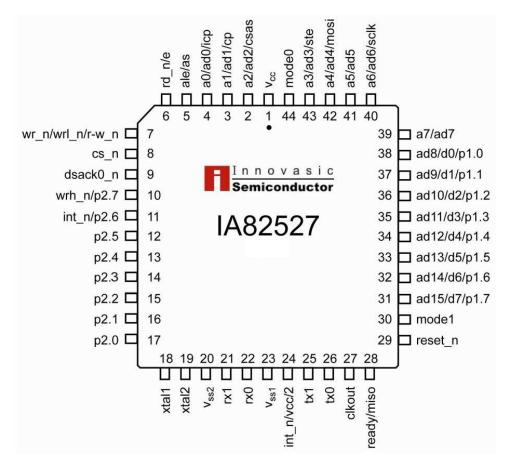
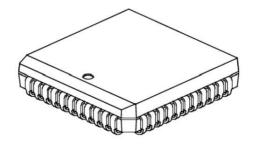
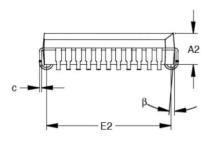
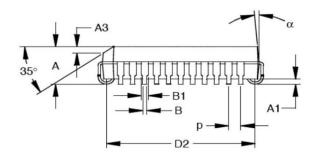
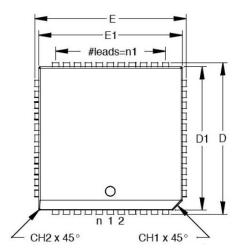


Figure 1. PLCC Package Diagram


Table 1. PLCC Pin List


Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	V _{cc}	12	p2.5	23	V _{ss1}	34	ad12/d4/p1.4
2	a2/ad2/csas	13	p2.4	24	int_n/v _{cc} /2	35	ad11/d3/p1.3
3	a1/ad1/cp	14	p2.3	25	tx1	36	ad10/d2/p1.2
4	a0/ad0/icp	15	p2.2	26	tx0	37	ad9/d1/p1.1
5	ale/as	16	p2.1	27	clkout	38	ad8/d0/p1.0
6	rd_n/e	17	p2.0	28	ready/miso	39	a7/ad7
7	wr_n/wrl_n/r-w_n	18	xtal1	29	reset_n	40	a6/ad6/sclk
8	cs_n	19	xtal2	30	mode1	41	a5/ad5
9	dsack0_n	20	V _{ss2}	31	ad15/d7/p1.7	42	a4/ad4/mosi
10	wrh_n/p2.7	21	rx1	32	ad14/d6/p1.6	43	a3/ad3/ste
11	int_n/p2.6	22	rx0	33	ad13/d5/p1.5	44	mode0




2.1.2 PLCC Physical Dimensions

The physical dimensions for the PLCC are as shown in Figure 2.

Legend:			
Symbol	Min	Nom	Max
А	0.1650	_	0.1800
A1	0.0200	_	_
A2	0.1450	_	0.1600
A3	0.042	_	0.056
В	0.0130	0.0170	0.0210
С	0.0077	_	0.015
D	0.6850	_	0.6950
D1	0.6500	_	0.6560
D2	0.582	—	0.638
E	0.6850	—	0.6950
E1	0.6500	—	0.6560
E2	0.582	—	0.638
n	-	44	_
n1	-	11	_
р	_	0.0500	_
α		7 °	
β		7 °	

Note: Controlling dimension in inches.

Figure 2. PLCC Physical Dimensions

2.1.3 PQFP Package

The pinout for the PQFP Package is as shown in Figure 3. The corresponding pinout is provided in Table 2.

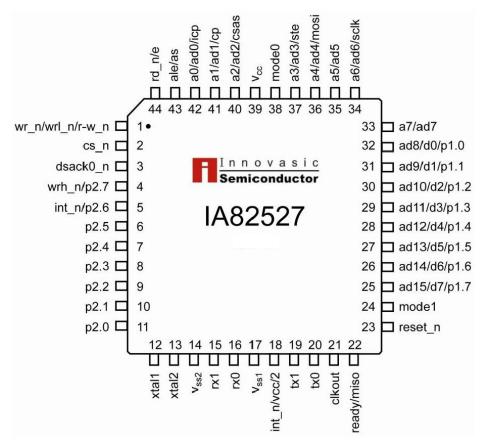
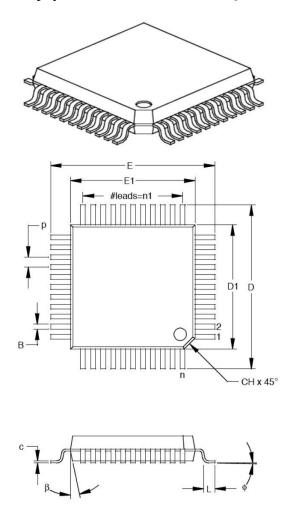
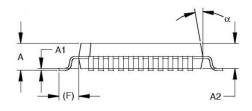


Figure 3. PQFP Package Diagram

Table 2. PQFP Pin List

Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	wr_n/wrl_n/r-w_n	12	xtal1	23	reset_n	34	a6/ad6/sclk
2	cs_n	13	xtal2	24	mode1	35	a5/ad5
3	dsack0_n	14	V _{ss2}	25	ad15/d7/p1.7	36	a4/ad4/mosi
4	wrh_n/p2.7	15	rx1	26	ad14/d6/p1.6	37	a3/ad3/ste
5	int_n/p2.6	16	rx0	27	ad13/d5/p1.5	38	mode0
6	p2.5	17	V _{ss1}	28	ad12/d4/p1.4	39	V _{cc}
7	p2.4	18	int_n/v _{cc} /2	29	ad11/d3/p1.3	40	a2/ad2/csas
8	p2.3	19	tx1	30	ad10/d2/p1.2	41	a1/ad1/cp
9	p2.2	20	tx0	31	ad9/d1/p1.1	42	a0/ad0/icp
10	p2.1	21	clkout	32	ad8/d0/p1.0	43	ale/as
11	p2.0	22	ready/miso	33	a7/ad7	44	rd_n/e




IA211080504-06

Page 13 of 58

2.1.4 PQFP Physical Dimensions

The physical dimensions for the PQFP are as shown in Figure 4.

Legend:			
Symbol	Min	Nom	Max
n	—	44	_
n1	—	11	_
р	—	0.031	_
A	-	_	0.096
A2	-	0.079	_
A1	—	0.010	_
L	0.019	0.025	0.031
(F)	-	0.047	_
E	0.478	0.488	0.498
D	0.478	0.488	0.498
E1	0.390	0.394	0.398
D1	0.390	0.394	0.398
С	0.005	0.007	0.009
В	0.011	0.014	0.017
CH	—	0.030	_
α	5°	_	16°
β	5°	_	16°
ф	0°	_	10°

<u>Note</u>: Controlling dimension in inches.

Figure 4. PQFP Physical Dimensions

2.2 Pin/Signal Descriptions

Descriptions of the pin and signal functions for the IA82527 Serial Communications Controller are provided in Table 3.

Several of the IA82527 pins have different functions depending on the operating mode of the device. Each of the different signals supported by a pin is listed and defined in Table 3, indexed alphabetically in the first column of the table. Additionally, the name of the pin associated with the signal as well as the pin numbers for both the PLCC and PQFP packages are provided in the "Pin" column. If the signal and pin names are the same, no entry is provided in the "Pin-Name" column.

	Pir	ı		
Signal	Name	PLCC	PQFP	Description
a0	a0/ad0/icp	4	42	address bits 7-0. Input. Mode 3. When the IA82527
a1	a1/ad1/cp	3	41	is configured to operate in the 8-bit non-multiplexed non-Intel architecture mode (Mode 3), these lines
a2	a2/ad2/csas	2	40	provide the 8-bit address bus input to the device.
a3	a3/ad3/ste	43	37	
a4	a4/ad4/mosi	42	36	
a5	a5/ad5	41	35	
a6	a6/ad6/sclk	40	34	
a7	a7/ad7	39	33	
ad0	a0/ad0/icp	4	42	address/data bits 15-0. Input/Output. Mode 1. When
ad1	a1/ad1/cp	3	41	the IA82527 is configured to operate in the 16-bit multiplexed Intel architecture mode (Mode 1), these
ad2	a2/ad2/csas	2	40	lines provide the 16-bit address bus (input) and the
ad3	a3/ad3/ste	43	37	16-bit data bus (input/output) for the device.
ad4	a4/ad4/mosi	42	36	
ad5	a5/ad5	41	35	
ad6	a6/ad6/sclk	40	34	
ad7	a7/ad7	39	33	
ad8	ad8/d0/p1.0	38	32	
ad9	ad9/d1/p1.1	37	31	
ad10	ad10/d2/p1.2	36	30	
ad11	ad11/d3/p1.3	35	29	
ad12	ad12/d4/p1.4	34	28	
ad13	ad13/d5/p1.5	33	27	
ad14	ad14/d6/p1.6	32	26	
ad15	ad15/d7/p1.7	31	25	

Table 3. Pin/Signal Descriptions

Page 15 of 58

	Pir	ı		
Signal	Name	PLCC	PQFP	Description
ale	ale/as	5	43	a ddress latch e nable. Input. Active High. Mode 0 and Mode 1. When the IA82527 is configured to operate in either the 8-bit multiplexed Intel architecture mode (Mode 0) or the 16-bit multiplexed Intel architecture mode (Mode 1), this signal latches the address into the device during the address phase of the bus cycle.
as	ale/as	5	43	 address strobe. Input. Active High. Mode 2. When the IA82527 is configured to operate in the 8-bit multiplexed non-Intel architecture mode (Mode 2), this signal latches the address into the device during the address phase of the bus cycle. If the IA82527 is configured to operate in Mode 3 (8-bit non-multiplexed non-Intel architecture), this pin must be tied high.
clkout	clkout	27	21	 clock out. Output (push-pull). This output provides a programmable clock frequency. The frequency is set via the Clockout Register (1FH) and can range from the frequency of the xtal (crystal) input to xtal/n, where n can be an integer value from 2 through 15. This output allows the IA82527 to clock other devices such as the host CPU. For 3.3V operation the crystal or external oscillator must run at <=12 MHz to produce clock output.
ср	a1/ad1/cp	3	41	c lock p hase. Input. Serial Interface Mode. When this input is a logic 0, data is sampled on the rising edge of sclk. When this input is a logic 1, data is sampled on the falling edge of sclk.
cs_n	cs_n	8	2	 chip select. Input. Active Low (Modes 0–3); Selectable Active Level (Serial Interface Mode). When the IA82527 is configured to operate in one of the parallel interface modes (Modes 0–3) or the Serial Interface Mode, this input, during its active state, selects the device allowing CPU access. For Serial Interface Mode operation, the active state is selectable (i.e., either high or low) via the IA8257 csas pin.
csas	a2/ad2/csas	2	40	chip select active state. Input. Serial Interface Mode. When this input is a logic 0, the cs_n input is configured to function active low. When this input is a logic 1, the cs_n input is configured to function active high.

Г

	Pin					
Signal	Name	PLCC	PQFP	Description		
d0	ad8/d0/p1.0	38	32	data bits 7-0. Input/Output. Mode 3. When the		
d1	ad9/d1/p1.1	37	31	IA82527 is configured to operate in the 8-bit		
d2	ad10/d2/p1.2	36	30	non-multiplexed non-Intel architecture mode (Mode 3), these lines provide the 8-bit data bus to the device.		
d3	ad11/d3/p1.3	35	29			
d4	ad12/d4/p1.4	34	28			
d5	ad13/d5/p1.5	33	27			
d6	ad14/d6/p1.6	32	26			
d7	ad15/d7/p1.7	31	25			
dsack0_n	dsack0_n	9	3	data and size acknowledge 0. Output. Active Low (open drain with active pull-up). Mode 3 (asynchronous operation). When the IA82527 is configured to operate in the 8-bit non-multiplexed non-Intel architecture mode (Mode 3), this signal functions as follows: when the CPU reads from the IA82527, dsack0_n active low indicates that the data is valid; when the CPU writes to the IA82527, dsack0_n active low indicates that the data has been received. Note: The active pull-up circuitry drives dsack0_n high for 10ns to raise it to a 3.0V voltage level. After that, an external pull up is required to pull dsack0_n the remainder of the way to V _{SS} .		
e	rd_n/e	6	44	e nable. Input. Active High. Mode 3 (synchronous). When the IA82527 is configured to operate in the 8-bit non-multiplexed non-Intel architecture mode (Mode 3), this signal functions as follows: when the CPU reads from or writes to the IA82527, e active high indicates that the address is valid.		
icp	a0/ad0/icp	4	42	idle clock polarity. Input. Serial Interface Mode. When this input is a logic 0, the polarity for the idle state of sclk is low. When this input is a logic 1, the polarity for the idle state of sclk is high.		

	Pi	n		
Signal	Name	PLCC	PQFP	Description
int_n	int_n/ V _{CC} /2	24	18	interrupt. Output (open collector). Active Low. On the
	int_n/p2.6	11	5	 IA82527, two pins can provide the interrupt (int_n) output; however, depending on the setting of the MUX bit in the CPU Interface Register (02H), only one of the pins will serve as the source of int_n as follows: PLCC Package: When the MUX bit of the CPU Interface Register is 0, pin 24 functions as the int_n output and pin 11 functions as p2.6. When the MUX bit of the CPU Interface Register is 1, pin 11 functions as the int_n output and pin 24 functions as V_{cc}/2. PQFP Package:
				 When the MUX bit of the CPU Interface Register is 0, pin 18 functions as the int_n output and pin 5 functions as p2.6. When the MUX bit of the CPU Interface Register is 1, pin 5 functions as the int_n output and pin 18 functions as V_{cc}/2.
miso	ready/miso	28	22	m aster in s lave o ut. Output (open drain). Serial Interface Mode. When the IA82527 is configured to operate with a serial interface, miso is the serial data output.

	P	in		
Signal	Name	PLCC	PQFP	Description
mode0	mode0	44	38	mode N (N = 1 or 0). Input. The logic levels at the
mode1	mode1	30	24	mode0 and mode1 inputs determine the operating mode (i.e., interface type) of the IA82527 as follows:
				mode1 mode0 Interface Type
				0 0 8-bit multiplexed Intel
				0 1 16-bit multiplexed Intel
				1 0 8-bit multiplexed non-Intel
				1 1 8-bit Non-multiplexed non-Intel
				The mode1 and mode0 inputs are also used to establish the Serial Interface Mode as follows: when the IA82527 is reset, if
				• mode1 = 0
				• mode0 = 0
				• rd_n = 0
				• wr_n = 0
				the Serial Interface Mode will be selected.
				The mode1 and mode0 pins are internally connected to weak pull-downs. These pins will be pulled low during reset if unconnected. Following reset, these pins will float.
mosi	a4/ad4/mosi	42	36	m aster o ut s lave i n. Input. Serial Interface Mode. When the IA82527 is configured to operate with a serial interface, mosi is the serial data input.

	Pin			
Signal	Name	PLCC	PQFP	Description
p1.0	ad8/d0/p1.0	38	32	p ort 1 , bit N (N = 7–0). Input/Output (general-
p1.1	ad9/d1/p1.1	37	31	purpose). Mode 0, Mode 2, and Serial Interface Mode.
p1.2	ad10/d2/p1.2	36	30	Port 1 bits p1.7–p1.0 can be individually programmed as inputs or outputs. Programming is accomplished by
p1.3	ad11/d3/p1.3	35	29	writing to the P1CONF Register (9FH). The 8 bits of
p1.4	ad12/d4/p1.4	34	28	the P1CONF Register, P1CONF7–P1CONF0, correspond directly to pins p1.7–p1.0 . Writing a 0 to a
p1.5	ad13/d5/p1.5	33	27	bit in the P1CONF Register causes the corresponding
p1.6	ad14/d6/p1.6	32	26	pin to be configured as a high-impedance input.
p1.7	ad15/d7/p1.7	31	25	 Writing a 1 to a bit in the P1CONF Register causes the corresponding pin to be configured as a push-pull output. All Port 1 pins have weak pull-ups until the port is configured by writing to the P1CONF Register. The default value of the P1CONF Register following a reset is 00H. Data is read from Port 1 via the P1IN Register (BFH). A logic 0 for any bit in this register means that a logic 0 was read from the corresponding pin; a logic 1 for any bit means that a logic 1 was read from the corresponding pin. The default value of the P1IN Register (DFH). Writing a logic 0 to any bit in this register means that a logic 1 is written to Port 1 via the P1OUT Register (DFH). Writing a logic 1 to any bit means that a logic 1 is written to the corresponding pin. The default value of the P1OUT Register means that a logic 1 is written to the corresponding pin. The default value of the P1OUT Register means that a logic 1 is written to the corresponding pin. The default value of the P1OUT Register following a reset is 0 to any bit means that a logic 1 is written to the corresponding pin. The default value of the P1OUT Register following a reset is 00H.

г

	Pin					
Signal	Name	PLCC	PQFP	Description		
p2.0	p2.0	17	11	p ort 2 , bit N (N = 7–0). Input/Output. Port 2 bits p2.7–		
p2.1	p2.1	16	10	p2.0 , can be individually programmed as inputs or outputs. Programming is accomplished by writing to		
p2.2	p2.2	15	9	the P2CONF Register (AFH). The 8 bits of the		
p2.3	p2.3	14	8	P2CONF Register, P2CONF7–P2CONF0, correspond		
p2.4	p2.4	13	7	directly to pins p2.7–p2.0 . Writing a 0 to a bit in the P2CONF Register causes the corresponding pin to be		
p2.5	p2.5	12	6	configured as a high-impedance input. Writing a 1 to a		
p2.6	int_n/p2.6	11	5	bit in the P2CONF Register causes the corresponding		
p2.7	wrh_n/p2.7	10	4	 pin to be configured as a push-pull output. All Port 2 pins have weak pull-ups until the port is configured by writing to the P2CONF Register. The default value of the P1CONF Register following a reset is 00H. Data is read from Port 2 via the P2IN Register (CFH). A logic 0 for any bit in this register means that a logic was read from the corresponding pin; a logic 1 for any bit means that a logic 1 was read from the corresponding pin. The default value of the P2IN Register following a reset is FFH. Data is written to Port 2 via the P2OUT Register (EFH). Writing a logic 0 to any bit in this register means that a logic 0 is written to the corresponding pin; writing a logic 1 to any bit means that a logic 1 is 		
rd_n	rd_n/e	6	44	written to the corresponding pin. The default value of the P2OUT Register following a reset is 00H. Two bits of Port 2 (P2.7 and P2.6) have alternate functions based on CPU interface mode. See Section 4.1.3 I/O Ports. read. Input. Active Low. Mode 0 and Mode 1. When		
				rd_n is asserted (low), it causes the IA82527 to drive the data from the location being read onto the data bus.		
ready	ready/miso	28	22	ready . Output (open drain). Active High. Mode 0 and Mode 1. When ready is asserted (high), it signals the completion of a bus cycle. The ready output is provided to force system CPU wait states as required.		

	Pin				
Signal	Name	PLCC	PQFP	Description	
reset_n	reset_n	29	23	reset . Input. Active Low. When the reset_n signal asserted (low), the IA82527 is initialized. There are two reset situations:	
				Cold reset is a power-on reset. As V_{CC} is driven to a valid level (power on), the reset_n signal must be driven low for a minimum of 1 ms measured from a valid V_{CC} level. No falling edge on the reset_n pin is required during a cold reset.	
				For warm reset, V _{CC} remains at a valid level (i.e., power is already on and remains on) while reset_n is driven low for a minimum of 1 ms.	
r-w_n	wr_n/wrl_n/r-w_n	7	1	r ead- w rite. Input. Active High (read)-Active Low (write). Mode 2 and Mode 3. When r-w_n is high, it signals a read cycle. When r-w_n is low, it signals a write cycle.	
rx0	rx0	22	16	Receive (rx), lines 0 and 1. Input. Pins rx0 and rx1	
rx1	rx1	21	15	are the inputs to the IA82527 from the CAN bus lines. These pins connect internally to the receiver input comparator. Serial data from the CAN bus can be received using both rx0 and rx1 or by using only rx0 as follows:	
				 When the CoBy Bit in the Bus Configuration Register (2FH) is a 0, rx0 and rx1 are connected to the input comparator rx0 is connected to the non-inverting input and rx1 is connected to the inverting input). A recessive level is read when rx0 > rx1. A dominant level is read when rx1 > rx0. 	
				• When the CoBy Bit in the Bus Configuration Register (2FH) is a 1, input comparison is disabled, and rx0 , which is still connected to the non-inverting input of the comparator, is the CAN bus line input. For this configuration, the DcR0 bit of the Bus Configuration Register must be a 0.	
				After a cold reset (power on), the default configuration is the use of both rx0 and rx1 for the CAN bus input.	
sclk	a6/ad6/sclk	40	34	s erial cl oc k . Input. Serial Interface Mode. The sclk pin is the serial clock input to the IA82527 (slave device). The clock signal is provided by the master device.	

	Pin			
Signal	Name	PLCC	PQFP	Description
ste	a3/ad3/ste	43	37	 synchronization transmission enable. Input. Serial interface Mode. The logic level at the ste pin enables the transmission of the synchronization bytes through the IA82527 miso pin while the master device transmits the Address and Control Byte as follows: When a logic 0 is placed on the ste pin, the synchronization bytes sent through the miso pin are 00H and 00H. When a logic 1 is placed on the ste pin, the synchronization bytes sent through the miso pin are AAH and 55H. The IA82527 sends the synchronization bytes after the cs_n signal has been asserted
tx0	tx0	26	20	Transmit (tx), lines 0 and 1 . Output (push-pull). Pins
tx1	tx1	25	19	tx0 and tx1 are the outputs from the IA82527 to the CAN bus lines.
				During a recessive bit, tx0 is high and tx1 is low. During a dominant bit, tx0 is low and tx1 is high.
V _{cc}	V _{cc}	1	39	Power (V_{cc}). This pin provides power for the IA82527 device. It must be connected to a +5V DC power source.
V _{cc} /2	int_n/ V _{cc} /2	24	18	Reference Voltage, ISO Physical Layer ($V_{cc}/2$). Output. The $V_{cc}/2$ pin provides a reference voltage for the ISO low-speed physical layer: • 2.38V DC (minimum) to 2.60V DC (maximum) ($V_{cc} = +5.0V$; $I_{OUT} \le 75 \mu A$) • 1.46V DC (minimum) to 1.688V DC (maximum) ($V_{cc} = +3.3V$; $I_{OUT} \le 75 \mu A$) This pin only functions as $V_{cc}/2$ when the MUX bit of the CPU Interface Register (02H) is 1.
V _{SS1}	V _{SS1}	23	17	Ground, Digital (V_{SS1}). This pin provides the digital ground (0V) for the IA82527. It must be connected to a V_{SS} board plane.
V _{SS2}	V _{SS2}	20	14	Ground, Analog (V_{SS2}). This pin provides the ground (0V) for the IA82527 analog comparator. It must be connected to a V_{SS} board plane.
wr_n	wr_n/wrl_n/r-w_n	7	1	wr ite. Input. Active Low. Mode 0. When wr_n is asserted (low), it signals a write cycle.

Table 3. Pin/Signal Descriptions (Continued)

Page 23 of 58

Г

	Pin			
Signal	Name	PLCC	PQFP	Description
wrh_n	wrh_n/p2.7	10	4	wr ite h igh byte. Input. Active Low. Mode 1. When wrh_n is asserted (low), it signals a write cycle for the high byte of data (bits 15–8).
wrl_n	wr_n/wrl_n/r-w_n	7	1	wr ite low byte. Input. Active Low. Mode 1. When wrl_n is asserted (low), it signals a write cycle for the low byte of data (bits 7–0).
xtal1	xtal1	18	12	Crystal (xtal) 1 . Input. The xtal1 pin is the input connection for an external crystal that drives the IA82527 internal oscillator. (When an external crystal is used, it is connected between this pin and the xtal2 pin—see next table entry.) If an external oscillator or clock source is used to drive the IA82527 instead of a crystal, the xtal1 pin is the input for this clock source.
xtal2	xtal2	19	13	Crystal (xtal) 2 . Output (push-pull). The xtal2 pin is the output connection for an external crystal that drives the IA82527 internal oscillator. (When an external crystal is used, it is connected between this pin and the xtal1 pin—see previous table entry.) If an external oscillator or clock source is used to drive the IA82527 instead of a crystal, xtal2 must be left unconnected (i.e., must be floated). Additionally, the xtal2 output must not be used as a clock source for other system components.

3. Maximum Ratings, Thermal Characteristics, and DC Parameters

For the Innovasic Semiconductor IA82527 Serial Communications Controller, the absolute maximum ratings, thermal characteristics, and DC parameters are provided in Tables 4 through 6, respectively.

Additionally, the DC parameters of the ISO Physical Layer are provided in Table 7.

Table 4. Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−55°C to +150°C
Case Temperature under Bias	−40°C to +125°C
Supply Voltage with Respect to V _{ss}	-0.3V to +7.0V
Voltage on Pins other than Supply with Respect to V_{ss}	-0.3V to V_{DD} +0.3V

Table 5. Thermal Characteristics

Symbol	Characteristic	Value	Units
T _A	Ambient Temperature	-40°C to 125°C	°C
PD	Power Dissipation	$MHz \times ICC \times V/1000$	W
0	44-Pin PLCC Package	30	°C/W
Θ_{Ja}	44-Pin PQFP Package	38.4	C/ VV
TJ	Average Junction Temperature	$T_A + (P_D \times \Theta_{Ja})$	°C

