# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





## iCE40 UltraPlus Breakout Board

**User Guide** 

FPGA-UG-02001 Version 1.1

March 2017



#### **Copyright Notice**

Copyright © 2017 Lattice Semiconductor Corporation. All rights reserved. The contents of these materials contain proprietary and confidential information (including trade secrets, copyright, and other Intellectual Property interests) of Lattice Semiconductor Corporation and/or its affiliates. All rights are reserved. You are permitted to use this document and any information contained therein expressly and only for bona fide non-commercial evaluation of products and/or services from Lattice Semiconductor Corporation or its affiliates; and only in connection with your bona fide consideration of purchase or license of products or services from Lattice Semiconductor Corporation or its affiliates, and only in accordance with the terms and conditions stipulated. Contents, (in whole or in part) may not be reproduced, downloaded, disseminated, published, or transferred in any form or by any means, except with the prior written permission of Lattice Semiconductor Corporation and/or its affiliates. Copyright infringement is a violation of federal law subject to criminal and civil penalties. You have no right to copy, modify, create derivative works of, transfer, sublicense, publicly display, distribute or otherwise make these materials available, in whole or in part, to any third party. You are not permitted to reverse engineer, disassemble, or decompile any device or object code provided herewith. Lattice Semiconductor Corporation reserves the right to revoke these permissions and require the destruction or return of any and all Lattice Semiconductor Corporation proprietary materials and/or data.

#### Patents

The subject matter described herein may contain one or more inventions claimed in patents or patents pending owned by Lattice Semiconductor Corporation and/or its affiliates.

#### **Trademark Acknowledgment**

Lattice Semiconductor Corporation<sup>®</sup>, the Lattice Semiconductor logo, Silicon Image<sup>®</sup>, the Silicon Image logo, Instaport<sup>®</sup>, the Instaport logo, InstaPrevue<sup>®</sup>, Simplay<sup>®</sup>, Simplay HD<sup>®</sup>, the Simplay HD logo, Simplay Labs<sup>™</sup>, the Simplay Labs logo, the SiBEAM Snap<sup>™</sup>, the SiBEAM Snap logo, UltraGig<sup>™</sup>, the UltraGig logo are trademarks or registered trademarks of Lattice Semiconductor Corporation in the United States and/or other countries. HDMI<sup>®</sup> and the HDMI logo with High-Definition Multimedia Interface are trademarks or registered trademarks of, and are used under license from, HDMI Licensing, LLC. in the United States or other countries. MHL<sup>®</sup> and the MHL logo with Mobile High-Definition Link are trademarks or registered trademarks of, and are used under license from, MHL, LLC. in the United States and/or other countries. WirelessHD<sup>®</sup>, the WirelessHD logo, WiHD<sup>®</sup> and the WiHD logo are trademarks, registered trademarks or service marks of SiBeam, Inc. in the United States or other countries. HDMI Licensing, LLC; Simplay Labs, LLC; and SiBeam, Inc. are wholly owned subsidiaries of Lattice Semiconductor Corporation.

All other trademarks and registered trademarks are the property of their respective owners in the United States or other countries. The absence of a trademark symbol does not constitute a waiver of Lattice Semiconductor's trademarks or other intellectual property rights with regard to a product name, logo or slogan.

#### **Export Controlled Document**

This document contains materials that are subject to the U.S. Export Administration Regulations and may also be subject to additional export control laws and regulations (collectively "Export Laws") and may be used only in compliance with such Export Laws. Unless otherwise authorized by an officer of Lattice Semiconductor Corporation in writing, this document and the information contained herein (a) may not be used in relation to nuclear, biological or chemical weapons, or missiles capable of delivering these weapons, and (b) may not be re-exported or otherwise transferred to a third party who is known or suspected to be involved in relation to nuclear, biological or chemical weapons, or missiles capable of delivering these weapons, or to any sanctioned persons or entities.

#### **Further Information**

To request other materials, documentation, and information, contact your local Lattice Semiconductor sales office or visit the Lattice Semiconductor web site at <a href="http://www.latticesemi.com">www.latticesemi.com</a>.

#### Disclaimers

These materials are provided on an "AS IS" basis. Lattice Semiconductor Corporation and its affiliates disclaim all representations and warranties (express, implied, statutory or otherwise), including but not limited to: (i) all implied warranties of merchantability, fitness for a particular purpose, and/or non-infringement of third party rights; (ii) all warranties arising out of course-of-dealing, usage, and/or trade; and (iii) all warranties that the information or results provided in, or that may be obtained from use of, the materials are accurate, reliable, complete, up-to-date, or produce specific outcomes. Lattice Semiconductor Corporation and its affiliates assume no liability or responsibility for any errors or omissions in these materials, makes no commitment or warranty to correct any such errors or omissions or update or keep current the information contained in these materials, and expressly disclaims all direct, indirect, special, incidental, consequential, reliance and punitive damages, including WITHOUT LIMITATION any loss of profits arising out of your access to, use or interpretation of, or actions taken or not taken based on the content of these materials. Lattice Semiconductor Corporation and its affiliates reserve the right, without notice, to periodically modify the information in these materials, and to add to, delete, and/or change any of this information.

#### **Products and Services**

The products and services described in these materials, and any other information, services, designs, know-how and/or products provided by Lattice Semiconductor Corporation and/or its affiliates are provided on "AS IS" basis, except to the extent that Lattice Semiconductor Corporation and/or its affiliates provides an applicable written limited warranty in its standard form license agreements, standard Terms and Conditions of Sale and Service or its other applicable standard form agreements, in which case such limited warranty shall apply and shall govern in lieu of all other warranties (express, statutory, or implied). EXCEPT FOR SUCH LIMITED WARRANTY, LATTICE SEMICONDUCTOR CORPORATION AND ITS AFFILIATES DISCLAIM ALL REPRESENTATIONS AND WARRANTIES (EXPRESS, IMPLIED, STATUTORY OR OTHERWISE), REGARDING THE INFORMATION, SERVICES, DESIGNS, KNOW-HOW AND PRODUCTS PROVIDED BY LATTICE SEMICONDUCTOR CORPORATION AND/OR ITS AFFILIATES, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND/OR NON-INFRINGEMENT OF THIRD PARTY RIGHTS. YOU ACKNOWLEDGE AND AGREE THAT SUCH INFORMATION, SERVICES, DESIGNS, KNOW-HOW AND PRODUCTS HAVE NOT BEEN DESIGNED, TESTED, OR MANUFACTURED FOR USE OR RESALE IN SYSTEMS WHERE THE FAILURE, MALFUNCTION, OR ANY INACCURACY OF THESE ITEMS CARRIES A RISK OF DEATH OR SERIOUS BODILY INJURY, INCLUDING, BUT NOT LIMITED TO, USE IN NUCLEAR FACILITIES, AIRCRAFT NAVIGATION OR COMMUNICATION, EMERGENCY SYSTEMS, OR OTHER SYSTEMS WITH A SIMILAR DEGREE OF POTENTIAL HAZARD. NO PERSON IS AUTHORIZED TO MAKE ANY OTHER WARRANTY OR REPRESENTATION CONCERNING THE PERFORMANCE OF THE INFORMATION, PRODUCTS, KNOW-HOW, DESIGNS OR SERVICES OTHER THAN AS PROVIDED IN THESE TERMS AND CONDITIONS.



### Contents

| 1.   | Introduction                                  | 5  |
|------|-----------------------------------------------|----|
| 2.   | Features                                      | 6  |
| 3.   | iCE40 UltraPlus Device                        | 7  |
| 4.   | Software Requirements                         | 8  |
| 5.   | Demonstration Design Shunts                   | 9  |
| 6.   | Clock Sources                                 | 10 |
| 7.   | Board Power                                   | 11 |
| 8.   | Board Configuration and Programming           | 12 |
| 9.   | Test Points                                   | 15 |
| 10.  | RGB LED Demonstration Design and Software GUI | 17 |
| 11.  | GUI Serial Communication Interface            | 20 |
| 11   | .1. LED Control via SPI                       | 20 |
| 11   | .2. SPI Protocol                              | 20 |
| 11   | .3. Register Definitions                      | 21 |
| 12.  | Ordering Information                          | 23 |
| Арре | endix A. Schematic Diagrams                   | 24 |
| Арре | endix B. Bill of Materials                    | 30 |
| Refe | rences                                        | 33 |
| St   | andards Documents                             | 33 |
| Τe   | chnical Support Assistance                    | 33 |
| Revi | sion History                                  | 34 |

### **Figures**

| Figure 2.1. iCE40 UltraPlus Breakout Board (Top Side)                  | 6  |
|------------------------------------------------------------------------|----|
| Figure 5.1. Default Shunt Locations                                    | 9  |
| Figure 8.1. Board Configuration for Programming Flash                  | 12 |
| Figure 8.2. Device Property Settings for Programming Flash             | 13 |
| Figure 8.3. Setting Status in Diamond Programmer for Programming Flash | 13 |
| Figure 8.4. Device Property Settings for Programming iCE40 UltraPlus   | 14 |
| Figure 9.1. J52 Header 'A' Breakouts                                   | 15 |
| Figure 9.2. J2 Header 'B' Breakouts                                    | 15 |
| Figure 9.3. J3 Header 'C' Breakouts                                    | 15 |
| Figure 9.4. U6 PMOD Connector                                          | 16 |
| Figure 9.5. J1 Adardvark Connector                                     | 16 |
| Figure 9.6. Breakout Headers                                           | 16 |
| Figure 10.1. SPI Flash Selection (Horizontal) for J6                   | 17 |
| Figure 10.2. iCE40 UltraPlus Selection (Vertical) for J6               | 18 |
| Figure 10.3. iCE40 UltraPlus LED Demonstration Interface               | 18 |
| Figure 11.1. SPI Physical Transaction                                  | 20 |
| Figure A.1. Block Diagram                                              | 24 |
| Figure A.2. FTDI Connection                                            | 25 |
| Figure A.3. DUT Connection                                             |    |
| Figure A.4. RGB,PMOD and HEADERS                                       | 27 |
| Figure A.5. Regulator Connection                                       |    |
| Figure A.6. SPI                                                        | 29 |

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



### Tables

| Table 11.1. Register Address and Bit Field Allocation | 20 |
|-------------------------------------------------------|----|
| Table 11.2. Bit Field Functionality Definition        | 20 |
| Table 11.3. RGB Color Code Definition                 | 21 |
| Table 11.4. LED Brightness Code Definition            | 21 |
| Table 11.5. Breathe Ramp Code Definition              | 22 |
| Table 11.6. Blink Rate Code Definition                | 22 |



### 1. Introduction

Thank you for choosing the Lattice iCE40 UltraPlus<sup>™</sup> Breakout Board.

This guide describes how to begin using the iCE40 UltraPlus Breakout Board, an easy-to-use platform for demonstrating the high-current LED drive capabilities of the iCE40 UltraPlus ; which has more memory to achieve functions mainly required in the customer mobile market. Along with the evaluation board and accessories, this kit includes a pre-loaded LED Driver Demo that demonstrates driving the RGB LEDs with a PWM circuit. In addition, most of the device's I/O pins are accessible via one of the several header locations on the board, facilitating rapid prototyping of user functions.

The contents of this user guide include demo operation, top-level functional descriptions of the various portions of the evaluation board, descriptions of the onboard connectors, shunts, and a complete set of schematics and the bill of materials for the iCE40 UltraPlus Breakout Board.

**Note:** Static electricity can severely shorten the lifespan of electronic components. Be careful when handling the iCE40 UltraPlus Breakout Board as to not damage it from ESD.



### 2. Features

The iCE40 UltraPlus Breakout Board includes:

- **iCE40 UltraPlus Breakout Board** The iCE40 UltraPlus Breakout Board features the following on-board components and circuits:
  - iCE40 UltraPlus (iCE40UP5K-SG48) device in a 48-PIN QFN package.
  - Example of a board using this 0.5mm pitch QFN package.
  - High-current LED output
  - iCE40 UltraPlus Current Measurements
  - Standard USB cable for device programming.
  - RoHS-compliant packaging and process
- **Pre-loaded Demo** The kit includes a pre-loaded demo to control the onboard RGB LED in conjunction with a software run GUI.
- USB Connector Cable A mini B USB port provides power, a programming interface and communication for the software RGB LED GUI to the iCE40 UltraPlus SPI port.

Figure 2.1 shows the top side of the iCE40 UltraPlus Breakout Board indicating the specific features that are designed on the board.



Figure 2.1. iCE40 UltraPlus Breakout Board (Top Side)



### 3. iCE40 UltraPlus Device

The board features an iCE40UP5K FPGA with a 1.2 V core supply. The device package is 48-PIN QFN. For a complete description of this device, see DS-1056, iCE40 UltraPlus Family Data Sheet.



### 4. Software Requirements

You should install the following software before you begin developing designs for the board:

- Lattice iCEcube2 2017.01 (or higher)
- Diamond Programmer 3. 9 (or higher)

These software are available at the Lattice website Design Software & IP page. Make sure you log in to <u>www.latticesemi.com</u>, otherwise these software downloads will not be visible. It is also recommended to download the RGB LED software GUI which interfaces with the iCE40 UltraPlus Breakout Board. This GUI allows you to control the RGB LED for color, brightness, blinking and breathing. Download the PC or MAC version of the GUI at <u>www.latticesemi.com</u>.



### 5. Demonstration Design Shunts

Lattice provides the RGB LED Driver Demo design programmed on the board. The RGB LED Driver Demo used in conjunction with the software GUI illustrates the use of a PWM driver controlling the LEDs on the board. Below is a description of the control jumpers for each LED.

- The RGB LED will transition colors
  - J27 can be used to probe RGB LED (Default shunted). If you remove J27, the RGB LED will not light up.

Figure 5.1 shows the default board shunt locations.



J28 - Enable DONE LED

J27 - RGB Shunts

Figure 5.1. Default Shunt Locations

<sup>© 2017</sup> Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



### 6. Clock Sources

The board has a single 12 MHz clock source. The 12 MHz clock drives both the FTDI USB interface device, and the iCE40UP5K device. The iCE40UP5K can be disconnected from the 12 MHz oscillator using J51. This is necessary, for example, when iCE40UP5K device pin35 is mistakenly programmed as an output and prevents the FTDI USB interface from operating.



### 7. Board Power

The board provides the following power features:

- Board Power
  - Board power is derived from the USB connection.
  - D13 Blue LED indicates Board Power
- iCE40 UltraPlus VCC/VCC\_PLL
  - Onboard 1.2 V supply
  - ICC can be measured across the series resistor R76 (1  $\Omega)$  at TP11 and TP12
  - ICC\_PLL can be measured across the series resistor R77 (1  $\Omega)$  at TP13 and TP14
- iCE40 UltraPlus VCCIO
  - Onboard 3.3 V supply
  - ICC0 can be measured across the series resistor R73 (1  $\Omega)$  at TP5 and TP6
  - ICC1 can be measured across the series resistor R75 (1  $\Omega$ ) at TP9 and TP10
  - ICC2 can be measured across the series resistor R74 (1  $\Omega$ ) at TP7 and TP8

The power supplies on the iCE40 UltraPlus Breakout Board are simplified and suitable for booting from the external SPI flash. The power supply sequencing does not conform to the NVCM boot requirements as specified in DS1056, <u>iCE40</u> <u>UltraPlus Family Data Sheet</u>. The user may encounter intermittent boot success and/or higher than specified startup currents when attempting to boot from NVCM.



### 8. Board Configuration and Programming

The board allows for programming of the iCE40 UltraPlus or the SPI Flash:

- SPI Flash Programming J6 shunt pins 1-3 and 2-4 (Default shunted)
  U5 Micron Technology Inc. part number N25Q032A13ESC40F
- iCE40 UltraPlus Configuration or Programming J6 shunt pins 1-2 and 3-4
  U1 iCE40UP5K SG48
- CRESETB can be asserted by pushing SW1
  - Can be probed with J11
- Done LED D2
  - Can be probed with J28 (Default shunted)

Details of the iCE40 UltraPlus Board for SPI flash programming are shown in Figure 8.1.



Figure 8.1. Board Configuration for Programming Flash

To program SPI flash in Diamond Programmer:

- 1. Make sure that the Standalone Diamond Programmer is installed.
- 2. Connect the iCE40 UltraPlus breakout board via the USB cable to a PC or MAC.
- 3. Start Diamond Programmer.
- 4. Set **Device Family** to iCE40 UltraPlus" and **Device** to "iCE40UP5K". Refer to Figure 8.3.
- 5. Open the Device Properties dialog. Apply the settings highlighted in Figure 8.2.
  Programming file is the bitmap file that will be programmed into the iCE40 UltraPlus breakout board.



Load from File button should be used to refresh fields such as "Data file size" and "End address(Hex)".

- 6. Click **OK** to exit Device Properties dialog.
- 7. Click the **Program** button in Diamond Programmer to download the bitstream file.

| evice Operation                    | SBI Flack Programming                                 |
|------------------------------------|-------------------------------------------------------|
| Deration:                          | SPI Flash Frase Program.Verify                        |
|                                    |                                                       |
| rogramming Options                 |                                                       |
| Programming file: demo_july8_Imp   | olmnt/sbt/outputs/bitmap/spi_gui_led_top_bitmap.bin 📖 |
|                                    |                                                       |
| evice Options                      |                                                       |
| Reinitialize part on program error |                                                       |
| PI Flash Options                   |                                                       |
| Family:                            | SPI Serial Flash                                      |
| Vendor:                            | Micron                                                |
| Device:                            | SPI-N25Q032A 🗸                                        |
| Package:                           | 8-pin VDFPN8                                          |
| SPI Programming                    |                                                       |
| Data file size (Bytes): 104157     | Load from File                                        |
| Start address (Hex):               | 0x00000000                                            |
| End address (Hex):                 | 0x00010000 👻                                          |
| 📃 Erase SPI part on programmir     | ng error                                              |
|                                    | rn sectors                                            |
| 📃 Secure SPI flash golden patte    |                                                       |

Figure 8.2. Device Property Settings for Programming Flash

| Diamond Programmer *                                                  |                                             |                                                              |      |                |                    | 1 23 |
|-----------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------|------|----------------|--------------------|------|
| File Edit View Design Help                                            |                                             |                                                              |      |                |                    |      |
| 😬 💼 🖶 😂 😂 🤤 😂 💭 🔤                                                     |                                             |                                                              |      |                |                    |      |
| Enable Status Device Family Device                                    | Operation<br>SPI Flash Erase,Program,Verify | File Name<br>t/sbt/outputs/bitmap/spi_gui_led_top_bitmap.bin | ľ    | Cable Settings | 5                  | Î    |
|                                                                       | \                                           |                                                              |      |                | Detect Cable       | E    |
|                                                                       |                                             |                                                              | sõu  | Cable:         | HW-USBN-28 (FTDI)  | -    |
|                                                                       |                                             |                                                              | Sett | Port:          | FTUSB-0            |      |
| Double-click to                                                       | Double-click to                             | Double-click to                                              | php  | Custom port:   |                    |      |
| set Device                                                            | set Device type                             | open the Device                                              | blea | Programming 5  | Speed Settings     |      |
| Program button Family to iCE40                                        | to iCE40UP5K                                | Properties dialog                                            | S    | Use defas      | ilt Clock Divider  |      |
| UltraPlus                                                             |                                             |                                                              |      | Use custo      | m Clock Divider    |      |
|                                                                       |                                             |                                                              |      | TOC Divider    | Setting (0-30x): 1 |      |
| output                                                                |                                             | Info                                                         |      |                |                    | ē ×  |
| Lattice VM Drivers detected (HW-DLN-3C (Parallel), HW-USBN-28 (FTDI)) |                                             | ID                                                           |      | Message        |                    |      |
| Output Td Console                                                     |                                             | Error Warmon Info                                            |      |                |                    |      |





The differences between programming ICE40 UltraPlus and programming flash are described below.

To program ICE40 UltraPlus in Diamond Programmer:

- 1. Change jumpers on J6, shunt pins 1-2 and 3-4.
- 2. Apply the settings in the Device Properties dialog as shown in Figure 8.4.

| eneral Device Informati                                          | on                                                          |
|------------------------------------------------------------------|-------------------------------------------------------------|
| Device Operation                                                 |                                                             |
| Access mode:                                                     | CRAM Programming                                            |
| Operation:                                                       | Fast Program 👻                                              |
| Programming Options<br>Programming file: demo_                   | july8_Implmnt/sbt/outputs/bitmap/spi_gui_led_top_bitmap.bin |
| Programming Options<br>Programming file: demo_<br>Device Options | july8_Implmnt/sbt/outputs/bitmap/spi_gui_led_top_bitmap.bin |

Figure 8.4. Device Property Settings for Programming iCE40 UltraPlus

For more information on Diamond Programmer, please refer to its user guide.

<sup>© 2017</sup> Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.





### 9. Test Points

The board features a number of headers and test connections which provide access to the iCE40 UltraPlus I/Os:



Figure 9.1. J52 Header 'A' Breakouts



Figure 9.2. J2 Header 'B' Breakouts



Figure 9.3. J3 Header 'C' Breakouts

<sup>© 2017</sup> Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.





Figure 9.4. U6 PMOD Connector



Figure 9.5. J1 Adardvark Connector

The break-out headers and test connectors are shown in Figure 9.6.



Figure 9.6. Breakout Headers





### **10. RGB LED Demonstration Design and Software GUI**

The iCE40 UltraPlus Breakout Board can demonstrate a complete controller for an RGB LED. Following are the steps to run the demonstration. The Software GUI tool used here is the same as the one used with the iCE40 Ultra Breakout Board. You can refer to the Lattice website <u>iCE40 Ultra Breakout Board</u> page.

To run the demonstration:

- 1. Ensure that the RGB LED GUI is installed.
- 2. Make sure the jumpers on J6 are both in the horizontal position. This is the default pins 1-3 and 2-4 shorted together.



Figure 10.1. SPI Flash Selection (Horizontal) for J6

- 3. Connect the iCE40 UltraPlus breakout board via the USB cable to a PC or MAC.
- 4. After the iCE40 UltraPlus device has initialized and the RGB LED is illuminated RED, change the J6 jumper positions to vertical, shorting pins 1-2 and 3-4. This is required to allow the USB port to communicate with the iCE40UP5K device.





Figure 10.2. iCE40 UltraPlus Selection (Vertical) for J6

5. Start the RGB GUI on the PC or MAC.



Figure 10.3. iCE40 UltraPlus LED Demonstration Interface



Now you can control the RGB LED on the iCE40 UltraPlus Breakout Board. You can set the color, brightness, blinking rate as well as breathing.

Note: The RGB GUI is the same demo tool used with iCE40 Ultra Breakout board.

<sup>© 2017</sup> Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



### **11. GUI Serial Communication Interface**

#### 11.1. LED Control via SPI

The Software GUI demonstration program communicates with the iCE40 UltraPlus device using an SPI serial communication channel. The SPI interface (mode 0) control link is implemented using a simple write-only protocol (see Figure 11.1.)



Figure 11.1. SPI Physical Transaction

#### 11.2. SPI Protocol

Data on the MOSI serial line is transmitted MSB first.

Addr[7:0] – Controls which of the 16 bits are updated with REG data.

Note that Unspecified REG bits must be written, but are ignored.

#### Table 11.1. Register Address and Bit Field Allocation

| Addr | Bits Written | Bit Position     |
|------|--------------|------------------|
| 0x13 | REG[3:0]     | dddd             |
| 0x14 | REG[7:4]     | CCCC             |
| 0x15 | REG[11:8]    | bbbb             |
| 0x16 | REG[15:12]   | aaaa             |
| 0x19 | REG[15:0]    | aaaabbbbccccdddd |

REG[15:0] – Consists of four control fields.

#### Table 11.2. Bit Field Functionality Definition

| Field | Bit Positions | Function           |
|-------|---------------|--------------------|
| аааа  | REG[15:12]    | RGB Color[3:0]     |
| bbbb  | REG[11:8]     | Brightness[3:0]    |
| сссс  | REG[7:4]      | Breathe Ramp [3:0] |
| dddd  | REG[3:0]      | Blink Rate [3:0]   |



#### **11.3.** Register Definitions

#### Table 11.3. RGB Color Code Definition

Default setting (hardware, software) is denoted by (\*).

| RGB Color[3:0] | Color        | Color Code |
|----------------|--------------|------------|
| 0000*          | Red          | #FF0000    |
| 0001           | Orange       | #FF7F00    |
| 0010           | Yellow       | #FFFF00    |
| 0011           | Chartreuse   | #7FFF00    |
| 0100           | Green        | #00FF00    |
| 0101           | Spring Green | #00FF7F    |
| 0110           | Cyan         | #00FFFF    |
| 0111           | Azure        | #007FFF    |
| 1000           | Blue         | #0000FF    |
| 1001           | Violet       | #7F00FF    |
| 1010           | Magenta      | #FF00FF    |
| 1011           | Rose         | #FF007F    |
| 1100           | —            | -          |
| 1101           | _            | -          |
| 1110           | _            | _          |
| 1111           | White        | #FFFFF     |

#### Table 11.4. LED Brightness Code Definition

| Brightness[3:0] | Level (%)    |
|-----------------|--------------|
| 0000            | 6.25 (dim)   |
| 0001            | 12.5         |
| 0010            | 18.78        |
| 0011            | 25           |
| 0100            | 31.25        |
| 0101            | 37.5         |
| 0110            | 43.75        |
| 0111*           | 50           |
| 1000            | 56.25        |
| 1001            | 62.5         |
| 1010            | 68.75        |
| 1011            | 75           |
| 1100            | 81.25        |
| 1101            | 87.5         |
| 1110            | 93.75        |
| 1111            | 100 (bright) |



#### Table 11.5. Breathe Ramp Code Definition

| Breathe Ramp[3:0] | Level (%)  |
|-------------------|------------|
| 0000*             | .0x (fast) |
| 0001              | .063x      |
| 0010              | .125x      |
| 0011              | .25x       |
| 0100              | .5x        |
| 0101              | 1x         |
| 0110              | 2x         |
| 0111              | 4x (slow)  |
| 1000              | -          |
| 1001              | -          |
| 1010              | -          |
| 1011              | -          |
| 1100              | -          |
| 1101              | -          |
| 1110              | -          |
| 1111              | _          |

#### Table 11.6. Blink Rate Code Definition

| Blink Rate[3:0] | Level (%)   |
|-----------------|-------------|
| 0000            | Always On   |
| 0001            | 1/16 (fast) |
| 0010            | 1/8         |
| 0011            | 1/4         |
| 0100            | 1/2         |
| 0101*           | 1           |
| 0110            | 2           |
| 0111            | 4           |
| 1000            | Always Off  |
| 1001            | I           |
| 1010            | -           |
| 1011            | -           |
| 1100            | I           |
| 1101            | I           |
| 1110            | -           |
| 1111            | _           |



### **12.** Ordering Information

| Description                    | Ordering Part Number | China RoHS Environment- Friendly Use Period (EFUP) |
|--------------------------------|----------------------|----------------------------------------------------|
| iCE40 UltraPlus Breakout Board | iCE40UP5K-B-EVN      |                                                    |



### **Appendix A. Schematic Diagrams**



#### Figure A.1. Block Diagram





Figure A.2. FTDI Connection