

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

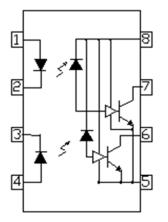
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DESCRIPTION

The ICPL2630 and ICPL2631 dual channel devices each consists of an infrared emitting diode, optically coupled to a high speed integrated photo detector logic gate with a strobable output.

FEATURES


- High speed 10Mbit/s
- 10kV/µs min. Common Mode Transient Immunity (ICPL2631)
- High AC Isolation voltage 5000V_{rms}
- Guaranteed performance from -40°C to 85°C
- Wide Operating temperature range 55°C to 125°C
- Logic Gate Output
- RoHS Compliant
- Safety Approvals Pending

APPLICATIONS

- Line Receivers, Data Transmission
- Ground Loop Elimination
- LSTTL to TTL, LSTTL or 5V CMOS
- Data Multiplexing
- Switch Mode Power Supplies
- Pulse Transformer Replacement
- Computer Peripheral Interface

ORDER INFORMATION

- Add G after PN for 10mm lead spacing
- Add SM after PN for Surface Mount,
- Add SMT&R after PN for Surface Mount Tape & Reel

- 1. Anode
- 2. Cathode
- 3. Cathode
- 4. Anode
- 5. Gnd
- 6. Vout2
- 7. Vout1
- 8. V_{CC}

ABSOLUTE MAXIMUM RATINGS

Input Diode

Forward Current (each Channel)	20mA
Reverse Voltage	5V
Power dissipation (each Channel)	40mW

Output

Output Current (each Channel)	50mA
Output Voltage	7V
Supply Voltage	7V
Power Dissipation	85mW

Total Package

Isolation Voltage Operating Temperature	5000V _{rms} -40 to 100 °C
Storage Temperature	-55 to 125 °C
Power Dissipation	85mW
Lead Soldering Temperature (10s)	260°C

ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate Hartlepool, Cleveland, TS25 1UD, United Kingdom Tel: +44 (0)1429 863 609 Fax: +44 (0)1429 863 581 e-mail: sales@isocom.co.uk

http://www.isocom.com

ISOCOM COMPONENTS ASIA LTD

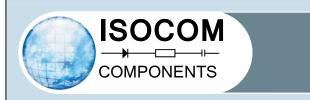
Hong Kong Office,
Block A, 8/F, Wah Hing Industrial mansion,
36 Tai Yau Street, San Po Kong, Kowloon, Hong Kong.
Tel: +852 2995 9217 Fax: +852 8161 6292
e-mail: sales@isocom.com.hk

Truth Table (Positive Logic)

Input	Output
Н	L
L	Н

ELECTRICAL CHARACTERISTICS

INPUT ($T_A = -40$ °C to 85°C unless otherwise specified)


Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Forward Voltage	$V_{\rm F}$	$I_F = 10 \text{mA}, T_A = 25 ^{\circ}\text{C}$		1.4	1.8	V
Reverse Voltage	V_R	$I_R = 10\mu A$	5.0			V
Temperature Coefficient	$\Delta V_F/\Delta T_A$	$I_F = 10 \text{mA}$		-1.8		mV/°C
Input Capacitance	C_{IN}	$V_F = 0V$, $f = 1MHz$		60		pF

OUTPUT ($T_A = -40$ °C to 85°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
High Level Supply Current	I_{CCH}	$I_F = 0 \text{mA}, V_{CC} = 5.5 \text{V}$		12.5	18	mA
Low Level Supply Current	I_{CCL}	$I_F = 10 \text{mA}, V_{CC} = 5.5 \text{V}$		14.5	21	mA

COUPLED (T_A = -40°C to 85°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
High Level Output Current	I_{OH}	$V_{CC} = 5.5V, V_O = 5.5V,$ $I_F = 250\mu A$		2.1	100	μΑ
Low Level Output Voltage	V_{OL}	$V_{CC} = 5.5V, I_F = 5mA,$ $I_{CL} = 13mA$		0.35	0.6	V
Input Threshold Current	${ m I}_{ m FT}$	$V_{CC} = 5.5V, V_O = 0.6V,$ $I_{OL} = 13mA$		2.5	5	mA

ELECTRICAL CHARACTERISTICS

Switching Characteristics ($T_A = -40$ °C to 85°C, $V_{CC} = 5V$, $I_F = 7.5$ mA unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Propagation Delay Time to Output High Level	t _{PLH}	$C_L = 15 pF, R_L = 350\Omega,$ $T_A = 25^{\circ}C$		35	100	ns
Propagation Delay Time to Output Low Level	t _{PHL}	$C_L = 15 pF, R_L = 350\Omega,$ $T_A = 25^{\circ}C$		40	100	ns
Pulse Width Distortion	t _{PHL} - t _{PLH}	$C_L = 15 pF, R_L = 350 \Omega$		5	35	ns
Output Rise Time	$t_{\rm r}$	$C_L = 15 pF, R_L = 350 \Omega$		40		ns
Output Fall time	t_{f}	$C_L = 15 pF, R_L = 350 \Omega$		10		ns
Common Mode Transient Immunity at Logic High	CM_{H}	$\begin{split} & ICPL2630 \\ & ICPL2631 \\ & I_F = 0mA, V_{CM} = 1kVp\text{-}p, \\ & V_{OH} = 2.0V, R_L = 350\Omega, \\ & T_A = 25^{\circ}C \end{split}$	5000 10000	20000		V/µs
Common Mode Transient Immunity at Logic Low	CM_{L}	$\begin{split} & ICPL2630 \\ & ICPL2631 \\ & I_F = 7.5 mA, \ V_{CM} = 1 kVp-p, \\ & V_{OL} = 0.8 V, \ R_L = 350 \Omega, \\ & T_A = 25 ^{\circ}C \end{split}$	5000 10000	20000		V/μs

Notes:

- 1. The V_{CC} supply must be bypassed by a $0.1\mu F$ capacitor or larger with good high frequency characteristic and should be connected as close as possible to the package V_{CC} and Gnd pins.
- 2. t_{PLH}— Propagation delay is measured from the 3.75mA level on the HIGH to LOW transition of the input current pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
- 3. t_{PHL}- Propagation delay is measured from the 3.75mA level on the LOW to HIGH transition of the input current pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- 4. t— Rise time is measured from the 10% to the 90% levels on the LOW to HIGH transition of the output pulse.
- 5. t_F Fall time is measured from the 90% to the 10% levels on the HIGH to LOW transition of the output pulse.
- 6. CM_H The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the HIGH state (i.e., $V_{OUT} > 2.0V$).
- 7. CM_L The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the LOW output state (i.e., $V_{OUT} < 0.8V$).



Fig 1 Forward Current vs Forward Voltage

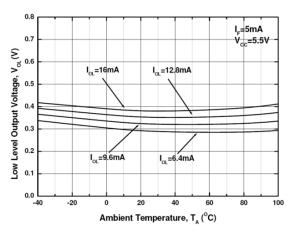


Fig 3 Low Level Output Voltage vs TA

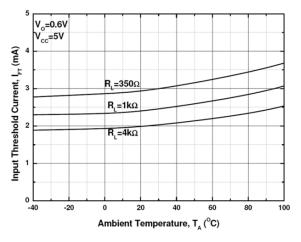


Fig 5 Input Threshold Current vs TA

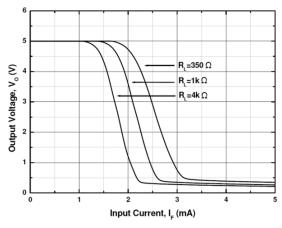


Fig 2 Output Voltage vs Input Current

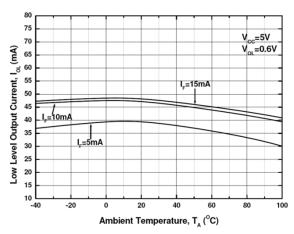


Fig 4 Low Level Output Current vs TA

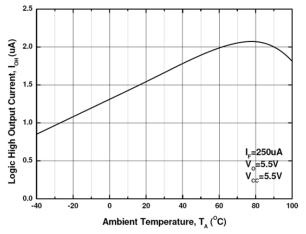


Fig 6 High Level Output Current vs T_A

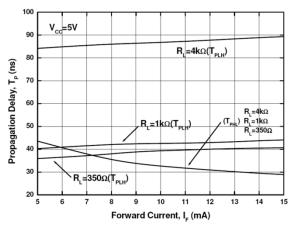


Fig 7 Propagation Delay vs Forward Current

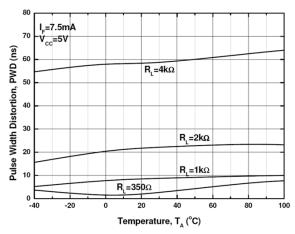


Fig 9 Pulse Width Distortion vs T_A

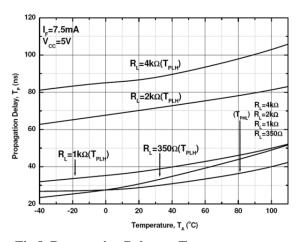
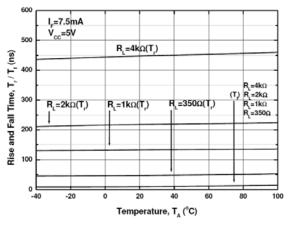
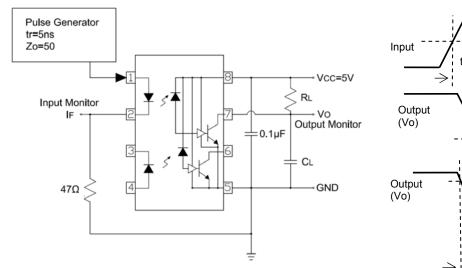
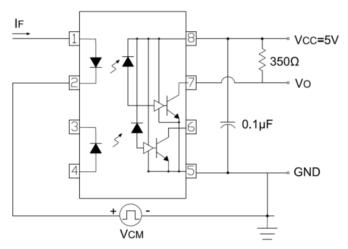


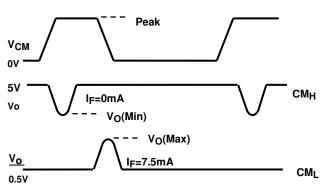
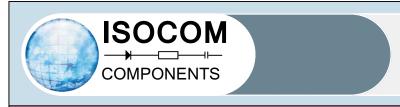
Fig 8 Propagation Delay vs T_A

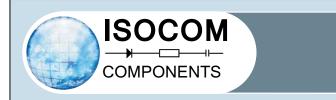




Fig 10 Rise Time and Fall Time vs $T_{\rm A}$

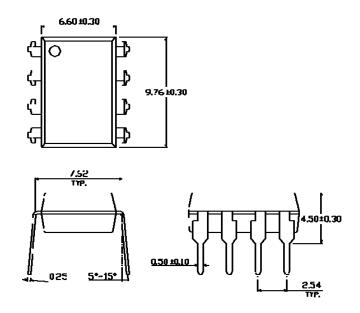
Input t_{PHL} t_{PLH} t_{PLH}

Fig 11 Switching Time Test Circuit

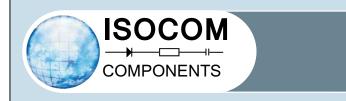




Fig 12 Common Mode Transient Immunity Test Circuit

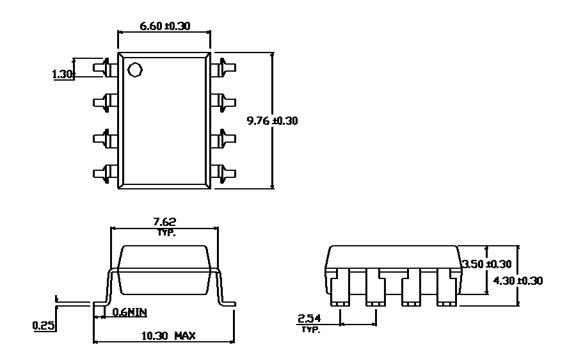
ORDER INFORMATION


ICPL2630, ICPL2631

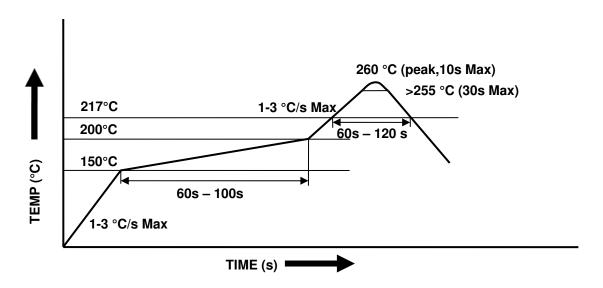
After PN	Description	Packing quantity
None	Standard DIP8	50 pcs per tube
G	10mm Lead Spacing	50 pcs per tube
SM	Surface Mount	50 pcs per tube
SMT&R	Surface Mount Tape & Reel	1000 pcs per reel


PACKAGE DIMENSIONS (mm)

DIP



G FORM



SMD

REFLOW SOLDERING TEMPERATURE PROFILE

