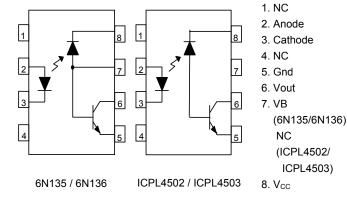
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DESCRIPTION

The 6N135, 6N136, ICPL4502 and ICPL4503 devices each consist of an infrared emitting diode, optically coupled to a high speed photo detector transistor. A separate connection for the photodiode bias and output-transistor collector increase the speed by several orders of magnitude over conventional phototransistor couplers by reducing the base-collector capacitance of the input transistor.

FEATURES

- High speed 1Mbit/s
- High AC Isolation Voltage 5000V_{rms}
- Guaranteed performance from 0°C to 70°C
- Wide Operating temperature range
 -55°C to 100°C
- Pb Free and RoHS Compliant
- Safety Approvals Pending

APPLICATIONS

- Line Receivers
- Telecommunication Equipments
- Power Transistor Isolation in Motor Drives
- Replacement of Low Speed Phototransistor Optocouplers
- Feedback Loop in Switch Mode Power Supplies
- High Speed Logic Ground Isolation
- Home Appliances

ORDER INFORMATION

- Add G after PN for 10mm lead spacing
- Add SM after PN for Surface Mount,
- Add SMT&R after PN for Surface Mount Tape & Reel

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C)

Input Diode

Forward Current Peak Forward Current (50% duty cycle, 1ms pulse width) Peak Transient Current (≤1µs pulse width, 300pps) Reverse Voltage Power dissipation	25mA 50mA 1A 5V 45mW
Output	
Output Current Peak Output Current Emitter-Base Reverse Voltage (6N135 and 6N136 only) Base Current (6N135 and 6N136 only) Output Voltage Supply Voltage Power Dissipation	8mA 16mA 5V 5mA -0.5 to 20V -0.5 to 30V 100mW

Total Package

Isolation Voltage5000VrmsOperating Temperature-55 to 100 °CStorage Temperature-55 to 125 °CLead Soldering Temperature (10s)260°C

ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate Hartlepool, Cleveland, TS25 1UD, United Kingdom Tel: +44 (0)1429 863 609 Fax : +44 (0)1429 863 581 e-mail: sales@isocom.co.uk http://www.isocom.com

ISOCOM COMPONENTS ASIA LTD

Hong Kong Office, Block A, 8/F, Wah Hing Industrial mansion, 36 Tai Yau Street, San Po Kong, Kowloon, Hong Kong. Tel: +852 2995 9217 Fax : +852 8161 6292 e-mail sales@isocom.com.hk

_

6N135, 6N136, ICPL4502, ICPL4503

ELECTRICAL CHARACTERISTICS ($T_A = 0^{\circ}C$ to 70°C unless otherwise specified)

INPUT

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Forward Voltage	V _F	$I_F = 16mA$		1.45	1.8	V
Reverse Voltage	V _R	$I_R = 10 \mu A$	5.0			V
Temperature Coefficient of V_F	$\Delta V_F / \Delta T_A$	$I_F = 16mA$		-1.9		mV/°C

OUTPUT

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Logic High Output Current	I _{OH}	$I_F = 0mA, V_O = V_{CC} = 5.5V,$ $T_A = 25^{\circ}C$		0.001	0.5	μΑ
		$I_F = 0mA, V_O = V_{CC} = 15V,$ $T_A = 25^{\circ}C$		0.01	1	
		$I_F = 0mA, V_O = V_{CC} = 15V$			50	
Logic Low Supply Current	I _{CCL}	$I_F = 16 \text{mA}, V_O = \text{Open}, \\ V_{CC} = 15 \text{V}$		140	200	μΑ
Logic High Supply Current	I _{CCH}	$I_F = 0mA$, $V_O = Open$, $V_{CC} = 15V$, $T_A = 25^{\circ}C$		0.01	1	μΑ
		$I_F = 0mA$, $V_O = Open$, $V_{CC} = 15V$			2	

* Typical values at T_A = 25°C

ELECTRICAL CHARACTERISTICS ($T_A = 0^{\circ}C$ to 70°C unless otherwise specified)

COUPLED

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Current Transfer Ratio	CTR	6N135 6N136 / ICPL4502 / ICPL4503	7 19		50 50	%
		$I_F = 16mA, V_O = 0.4V$ $V_{CC} = 4.5V, T_A = 25^{\circ}C$				
		6N135 6N136 / ICPL4502 / ICPL4503	5 15			
		$I_{\rm F} = 16 {\rm mA}, V_{\rm O} = 0.5 {\rm V}$ $V_{\rm CC} = 4.5 {\rm V}$				
Logic Low Output Voltage	V _{OL}	6N135		0.18	0.4	V
oulput voltage		$I_F = 16mA$, $I_O = 1.1mA$, $V_{CC} = 4.5V$, $T_A = 25^{\circ}C$				
		6N136 / ICPL4502 / ICPL4503		0.25	0.4	
		$I_F = 16mA$, $I_O = 3mA$, $V_{CC} = 4.5V$, $T_A = 25^{\circ}C$				
		6N135			0.5	
		$I_F = 16mA, I_O = 0.8mA, V_{CC} = 4.5V$				
		6N136 / ICPL4502 / ICPL4503			0.5	
		$I_F = 16mA, I_O = 2.4mA, V_{CC} = 4.5V$				

* Typical values at T_A = 25°C

ELECTRICAL CHARACTERISTICS (T_A = 0°C to 70°C unless otherwise specified)

Switching Characteristics ($T_A = 0^{\circ}C$ to 70°C, $I_F = 16mA$, $V_{CC} = 5V$ unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Propagation Delay	T _{PHL}	6N135				μs
Time to Logic Low		$\begin{split} R_L &= 4.1 k \Omega, T_A = 25^\circ C \\ R_L &= 4.1 k \Omega \end{split}$		0.35	1.5 2.0	
		6N136 / ICPL4502 / ICPL4503				
		$\begin{split} R_{\rm L} &= 1.9 k \Omega, T_{\rm A} = 25^\circ {\rm C} \\ R_{\rm L} &= 1.9 k \Omega \end{split}$		0.35	0.8 1.0	
Propagation Delay	T _{PLH}	6N135				μs
Time to Logic High		$\begin{aligned} R_L &= 4.1 k\Omega, \ T_A = 25^{\circ}C \\ R_L &= 4.1 k\Omega \end{aligned}$		0.5	1.5 2.0	
		6N136 / ICPL4502 / ICPL4503				
		$\begin{split} R_{\rm L} &= 1.9 k \Omega, T_{\rm A} = 25^\circ C \\ R_{\rm L} &= 1.9 k \Omega \end{split}$			0.8 1.0	
Common Mode	CM_{H}	6N135	1000			V/µs
Transient Immunity at Logic High		$I_{\rm F} = 0 \text{mA}, V_{\rm CM} = 10 \text{Vp-p}, R_{\rm L} = 4.1 \text{k}\Omega, T_{\rm A} = 25^{\circ}\text{C}$				
		6N136 / ICPL4502	1000			
		$I_{\rm F} = 0 \text{mA}, V_{\rm CM} = 10 \text{Vp-p}, R_{\rm L} = 1.9 \text{k}\Omega, T_{\rm A} = 25^{\circ}\text{C}$				
		ICPL4503	15000	20000		
		$I_F = 0mA, V_{CM} = 1500Vp-p, R_L = 1.9k\Omega, T_A = 25^{\circ}C$				
Common Mode	CML	6N135	1000			V/µs
Transient Immunity at Logic Low		$I_F = 16mA, V_{CM} = 10Vp-p,$ $R_L = 4.1k\Omega, T_A = 25^{\circ}C$				
		6N136 / ICPL4502	1000			
		$\begin{split} I_F &= 16 m A, \ V_{CM} = 10 V p\text{-}p, \\ R_L &= 1.9 k \Omega, \ T_A = 25^\circ C \end{split}$				
		ICPL4503	15000	20000		
		$I_{\rm F} = 16 {\rm mA}, V_{\rm CM} = 1500 {\rm Vp-p}, \\ R_{\rm L} = 1.9 {\rm k}\Omega, T_{\rm A} = 25^{\circ}{\rm C}$				

* Typical values at $T_A = 25^{\circ}C$

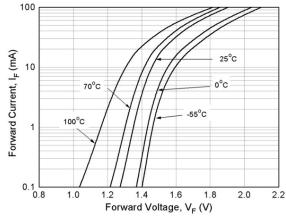


Fig 1 Forward Current vs Forward Voltage

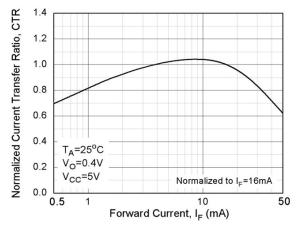


Fig 3 Normalized CTR vs Forward Current

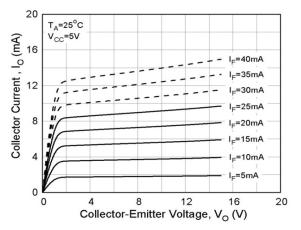
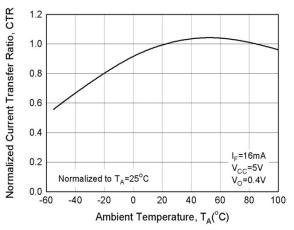
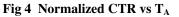




Fig 2 Output Current vs Output Voltage

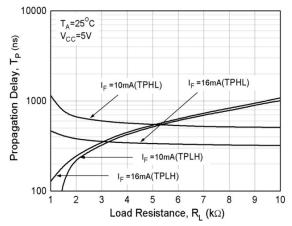
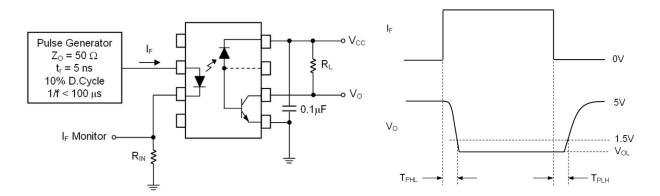



Fig 7 Propagation Delay vs Load Resistance

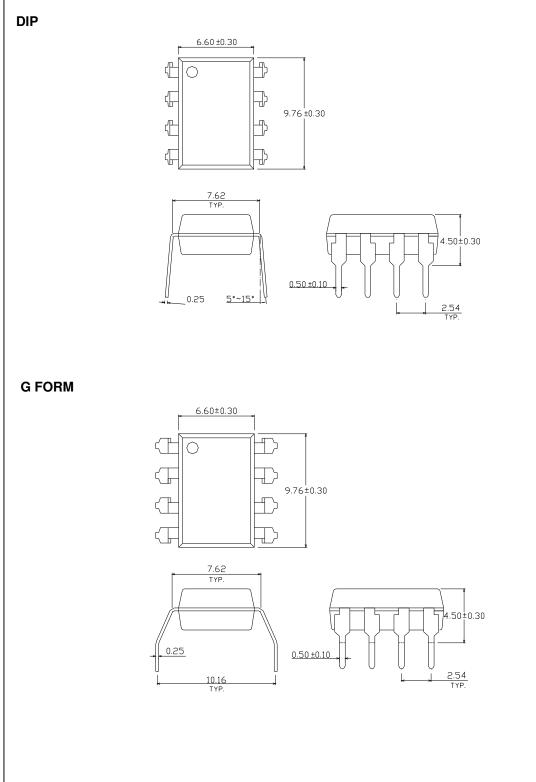
Switching Time Test Circuit

Common Mode Transient Immunity Test Circuit

Note:

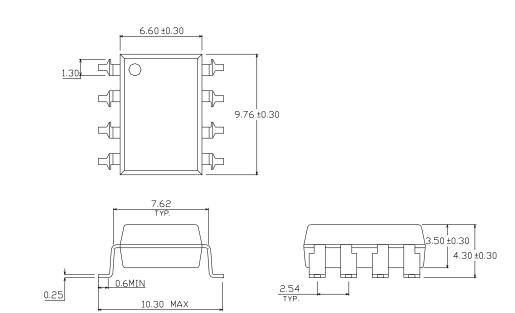
Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{CM}/dt on the leading edge of the common mode pulse signal V_{CM} , to assure that the output will remain in a logic high state (i.e., $V_0 > 2.0V$).

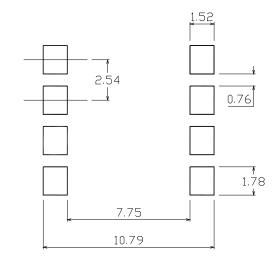
Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{CM}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e., $V_O < 0.8V$).



ORDER INFORMATION

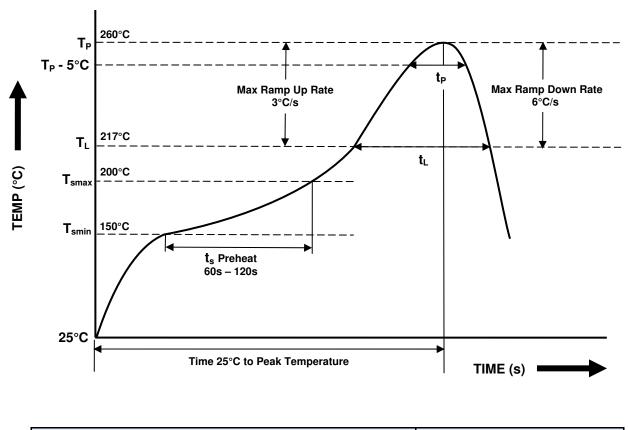
	6N135, 6N136, ICPL4502, ICPL4503					
After PN	PN	Description	Packing quantity			
None	6N135, 6N136, ICPL4502, ICPL4503	Standard Dip8	45 pcs per tube			
G	6N135G, 6N136G, ICPL4502G, ICPL4503G	10mm Lead Spacing	45 pcs per tube			
SM	6N135SM, 6N136SM, ICPL4502SM, ICPL4503SM	Surface Mount	45 pcs per reel			
SMT&R	6N135SMT&R, 6N136SMT&R, ICPL4502SMT&R, ICPL4503SMT&R	Surface Mount Tape & Reel	1000 pcs per reel			


PACKAGE DIMENSIONS (mm)

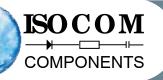


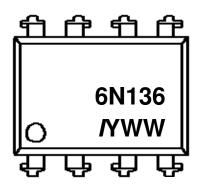
PACKAGE DIMENSIONS (mm)

SMD

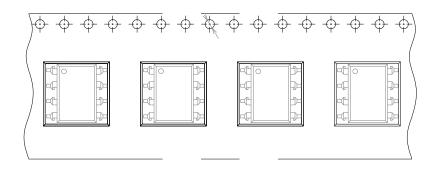


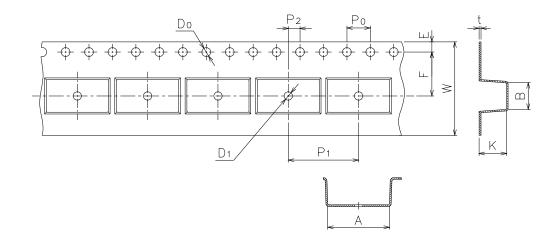
RECOMMENDED PAD LAYOUT FOR SMD (mm)




REFLOW SOLDERING TEMPERATURE PROFILE (One Time Reflow Soldering is Recommended)

Profile Details	Conditions
Preheat - Min Temperature (T _{SMIN}) - Max Temperature (T _{SMAX}) - Time T _{SMIN} to T _{SMAX} (t _s)	150°C 200°C 60s - 120s
	260°C 217°C 30s 60s - 100s 3°C/s max 6°C/s max
Average Ramp Up Rate (T_{smax} to T_P)	3°C/s max
Time 25°C to Peak Temperature	8 minutes max


DEVICE MARKING (Example 6N136)


6N136	denotes Device Part Number
Y	denotes 1 digit Year code
WW	denotes 2 digit Week code
1	denotes Isocom

TAPE AND REEL PACKAGING

Direction of feed from reel

Dimension No.	Α	В	Do	D1	E	F
Dimension(mm)	10.4±0.1	10.0±0.1	1.5±0.1	1.5±0.1	1.75±0.1	7.5±0.1
Dimension No.	Ро	P1	P2	t	W	к
Dimension (mm)	4.0±0.1	12.0±0.1	2.0±0.1	0.4±0.1	16.0+0.3/ -0.1	4.5±0.1

NOTES :

- Isocom is continually improving the quality, reliability, function or design and Isocom reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/application where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc., please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales for advice.
- The contents described herein are subject to change without prior notice.
- Do not immerse device body in solder paste.