

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

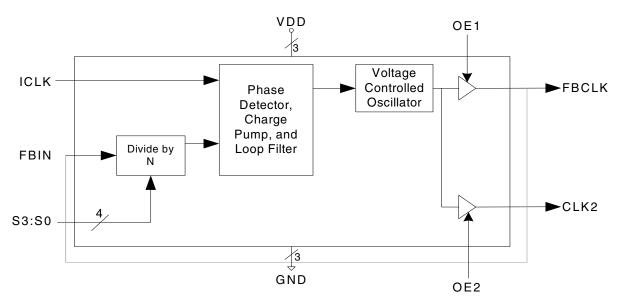
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LOW PHASE NOISE ZERO DELAY BUFFER AND MULTIPLIER

ICS670-04

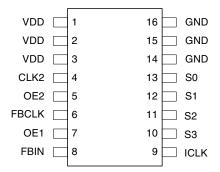
Description

The ICS670-04 is a high speed, low phase noise, Zero Delay Buffer (ZDB) which integrates IDT's proprietary analog/digital Phase Locked Loop (PLL) techniques. It is identical to the ICS670-02, but with an increased maximum output frequency of 210 MHz. There are two identical outputs on the chip. The FBCLK should be used to connect to the FBIN. Each output has its own output enable pin.


The ICS670-04 is ideal for synchronizing outputs in a large variety of systems, from personal computers to data communications to video. By allowing off-chip feedback paths, the chip can eliminate the delay through other devices. The 15 different on-chip multipliers work in a variety of applications. For other multipliers, including functional multipliers, see the ICS527.

Features

- Packaged in 16-pin SOIC Pb (lead) free
- Clock inputs from 5 to 210 MHz (see page 2)
- Patented PLL with low phase noise
- Output clocks up to 210 MHz at 3.3 V
- 15 selectable on-chip multipliers
- Power down mode available
- Low phase noise: -111 dBc/Hz at 10 kHz
- Output enable function tri-states outputs
- Low jitter 15 ps one sigma
- · Advanced, low power, sub-micron CMOS process
- Operating voltage of 3.3 V or 5 V
- Industrial temperature grade


NOTE: EOL for non-green parts to occur on 5/13/10 per PDN U-09-01

Block Diagram

External Feedback from FBCLK is recommended.

Pin Assignment

Multiplier Select Table

S3	S2	S1	S0	CLK2 (and FBCLK)	Input Range (MHz)
0	0	0	0	Low (Power down entire chip)	
0	0	0	1	Input x1.333	18 - 157.5
0	0	1	0	Input x6	5 - 35
0	0	1	1	Input x1.5	16.67 - 140
0	1	0	0	Input x3.333	7.5 - 63
0	1	0	1	Input x2.50	10 - 84
0	1	1	0	Input x4	6 - 52.5
0	1	1	1	Input x1	25 - 210
1	0	0	0	Input x2.333	11 - 90
1	0	0	1	Input x2.666	10 - 78.75
1	0	1	0	Input x12	5 - 17.5
1	0	1	1	Input x3	8 - 70
1	1	0	0	Input x10	5 - 21
1	1	0	1	Input x5	6 - 42
1	1	1	0	Input x8	5 - 26.25
1	1	1	1	Input x2	12 - 105

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1 - 3	VDD	Input	Power supply. Connect both pins to the same voltage (either 3.3 V or 5 V).
4	CLK2	Output	Clock output from VCO. Output frequency equals the input frequency times multiplier.
5	OE2	Input	Output clock enable 2. Tri-states the clock 2 output when low.
6	FBCLK	Output	Clock output from VCO. Output frequency equals the input frequency times multiplier.
7	OE1	Input	Output clock enable 1. Tri-states the feedback clock output when low.
8	FBIN	Input	Feedback clock input.
9	ICLK	Input	Clock input. Connect to a 5 - 210 MHz clock.
10	S3	Input	Multiplier select pin 3. Determines outputs per table above. Internal pull-up.
11	S2	Input	Multiplier select pin 2. Determines outputs per table above. Internal pull-up.
12	S1	Input	Multiplier select pin 1. Determines outputs per table above. Internal pull-up.
13	S0	Input	Multiplier select pin 0. Determines outputs per table above. Internal pull-up.
14 - 16	GND	Power	Connect to ground.

External Components

The ICS670-04 requires a minimum number of external components for proper operation. Tie all VDD pins together, all ground pins together, and connect a $0.01\mu F$ decoupling capacitor between them. A series termination resistor of 33Ω must be used on each clock output.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS670-04. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	7 V
All Inputs and Outputs	-0.5 V to VDD+0.5 V
Ambient Operating Temperature	-40 to +85° C
Storage Temperature	-65 to +150° C
Junction Temperature	150° C
Soldering Temperature	260° C

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature	-40		+85	°C
Power Supply Voltage (measured in respect to GND)	+3.0		+5.5	V

DC Electrical Characteristics

VDD=3.3 V ±10%, Ambient temperature -40 to +85° C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		3.0		5.5	V
Input High Voltage	V _{IH}		2			V
Input Low Voltage	V _{IL}				0.8	V
Output High Voltage	V _{OH}	I _{OH} = -12 mA	2.4			V
Output Low Voltage	V _{OL}	I _{OL} = 12 mA			0.4	V
Output High Voltage, CMOS level	V _{OH}	I _{OH} = -4 mA	VDD-0.4			V
Operating Supply Current	IDD	No Load		35		mA

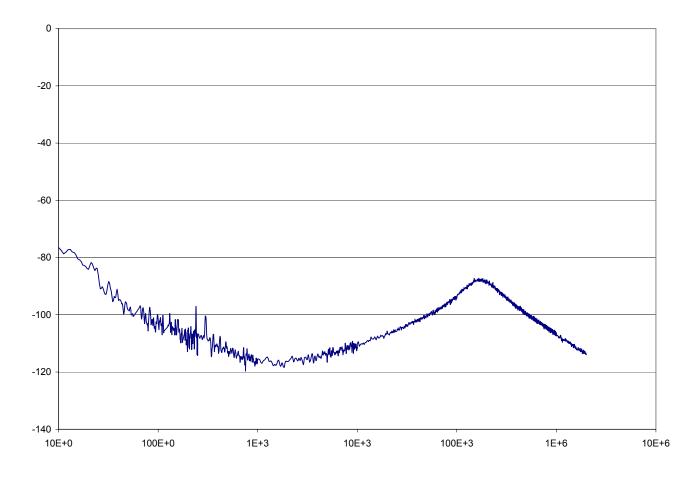
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Short Circuit Current	Ios	Each output		±50		mA
Internal Pull-up Resistor	R _{PU}	OE, select pins		200		kΩ
Input Capacitance	C _{IN}	OE, select pins		5		pF

AC Electrical Characteristics

VDD = 3.3V ±10%, Ambient Temperature -40 to +85°C, unless stated otherwise

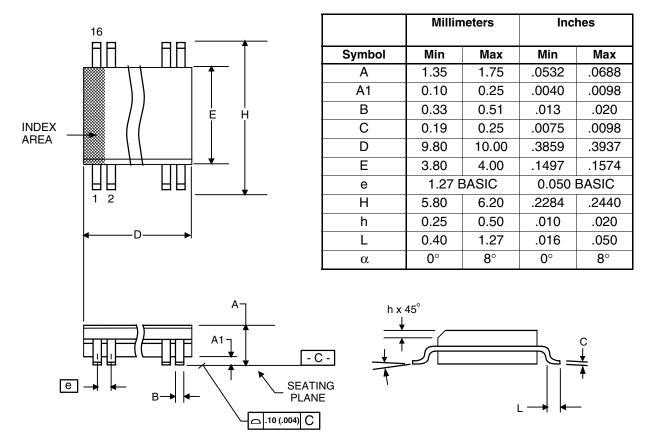
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Clock Frequency	f _{IN}	See table on page 2	5		210	MHz
Output Clock Frequency					210	MHz
Output Rise Time	t _{OR}	0.8 to 2.0 V, no load			1.5	ns
Output Fall Time	t _{OF}	2.0 to 0.8 V, no load			1.5	ns
Output Clock Duty Cycle	t _{DC}	measured at VDD/2	45	50	55	%
Input to Output Skew		Note 1		±100		ps
Maximum Absolute Jitter		short term		±45		ps
Maximum Jitter		one sigma		15		ps
Phase Noise, relative to		100 Hz offset		-103		dBc/Hz
carrier, 125 MHz (x5)		1 kHz offset		-117		dBc/Hz
		10 kHz		-111		dBc/Hz
		200 kHz		-88		dBc/Hz

Note 1: Rising edge of ICLK compared with rising edge of CLK2, with FBCLK connected to FBIN, and 15 pF load on CLK2.


Note for OE1

The OE1 pin is intended to facilitate board test. Note that disabling the FBLK will open the loop, causing a high-frequency to be output from CLK2. Therefore, set OE1 low only if the chip is in power-down (S3:S0 = 0).

Thermal Characteristics


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	θ_{JA}	Still air		120		° C/W
Ambient	θ_{JA}	1 m/s air flow		115		° C/W
	θ_{JA}	3 m/s air flow		105		° C/W
Thermal Resistance Junction to Case	$\theta_{\sf JC}$			58		° C/W

Phase Noise for 125 MHz output, 25 MHz clock input (VDD = 3.3 V)

Package Outline and Package Dimensions (16-pin SOIC, 150 Mil. Narrow Body)

Package dimensions are kept current with JEDEC Publication No. 95

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
670M-04I*	ICS670M-04I	Tubes	16-pin SOIC	-40 to +85° C
670M-04IT*	ICS670M-04I	Tape and Reel	16-pin SOIC	-40 to +85° C
670M-04ILF	670M-04ILF	Tubes	16-pin SOIC	-40 to +85° C
670M-04ILFT	670M-04ILF	Tape and Reel	16-pin SOIC	-40 to +85° C

*NOTE: EOL for non-green parts to occur on 5/13/10 per PDN U-09-01

"LF" denotes Pb (lead) free package.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775 For Tech Support

www.idt.com/go/clockhelp

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

