

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

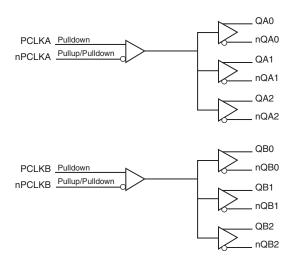
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

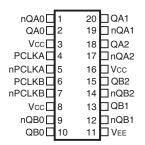
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL/ECL FANOUT BUFFER

ICS853013

General Description


The ICS853013 is a low skew, high performance dual 1-to-3 Differential-to-2.5V/3.3V/5V LVPECL/ ECL Fanout Buffer and a member of the Hiperclocks™ family of High Performance Clock Solutions from IDT. The ICS853013 operates with a

positive or negative power supply at 2.5V, 3.3V, or 5V. Guaranteed output and part-to-part skew characteristics make the ICS853013 ideal for those clock distribution applications demanding well defined performance and repeatability.


Features

- Two differential LVPECL/ECL bank outputs
- Two differential LVPECL clock input pairs
- PCLKx, nPCLKx pairs can accept the following differential input levels: LVPECL, LVDS, CML, SSTL
- Output frequency: >2GHz (typical)
- Translates any single-ended input signal to LVPECL levels with resistor bias on nPCLKx input
- Output skew: 40ps (maximum)
- Part-to-part skew: 250ps (maximum)
- Propagation delay: 5780ps (maximum)
- Additive phase jitter, RMS: 0.03ps (typical)
- LVPECL mode operating voltage supply range:
 V_{CC} = 2.375V to 5.25V, V_{EE} = 0V
- ECL mode operating voltage supply range:
 V_{CC} = 0V, V_{EE} = -5.25V to -2.375V
- -40°C to 85°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

Block Diagram

Pin Assignment

ICS853013

20-Lead SOIC
7.5mm x 12.8mm x 2.3mm package body
M Package
Top View

Table 1. Pin Descriptions

Number	Name	T	уре	Description
1, 2	nQA0, QA0	Output		Differential output pair. LVPECL interface levels.
3, 8, 16	V _{CC}	Power		Power supply pins.
4	PCLKA	Input	Pulldown	Non-inverting differential LVPECL clock input.
5	nPCLKA	Input	Pullup/ Pulldown	Inverting differential LVPECL clock input. V _{CC} /2 default when left floating.
6	PCLKB	Input	Pulldown	Non-inverting differential LVPECL clock input.
7	nPCLKB	Input	Pullup/ Pulldown	Inverting differential LVPECL clock input. V _{CC} /2 default when left floating.
9, 10	nQB0, QB0	Output		Differential output pair. LVPECL interface levels.
11	V _{EE}	Power		Negative supply pin.
12, 13	nQB1, QB1	Output		Differential output pair. LVPECL interface levels.
14, 15	nQB2, QB2	Output		Differential output pair. LVPECL interface levels.
17, 18	nQA2, QA2	Output		Differential output pair. LVPECL interface levels.
19, 20	nQA1, QA1	Output		Differential output pair. LVPECL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
R _{PULLDOWN}	Input Pulldown Resistor			75		kΩ
R _{VCC/2}	Pullup/Pulldown Resistors			50		kΩ

Function Table

Table 3. Clock Input Function Table

In	puts	Ou	itputs		
PCLKA or PCLKB	nPCLKA or nPCLKB	QA0:Q2, QB0:QB2	nQA0:nQA2, nQB0:nQB2	Input to Output Mode	Polarity
0	1	LOW	HIGH	Differential to Differential	Non-Inverting
1	0	HIGH	LOW	Differential to Differential	Non-Inverting
0	Biased; NOTE 1	LOW	HIGH	Single-Ended to Differential	Non-Inverting
1	Biased; NOTE 1	HIGH	LOW	Single-Ended to Differential	Non-Inverting
Biased; NOTE 1	0	HIGH	LOW	Single-Ended to Differential	Inverting
Biased; NOTE 1	1	LOW	HIGH	Single-Ended to Differential	Inverting

NOTE 1: Please refer to the Application Information, Wiring the Differential Input to Accept Single Ended Levels.

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{CC}	5.5V (LVPECL mode, V _{EE} = 0V)
Negative Supply Voltage, V _{EE}	-5.5V (ECL mode, V _{CC} = 0V)
Inputs, V _I (LVPECL mode)	-0.5V to V _{CC} + 0.5V
Inputs, V _I (ECL mode)	0.5V to V _{EE} – 0.5V
Outputs, I _O Continuos Current Surge Current	50mA 100mA
Operating Temperature Range, T _A	-40°C to +85°C
Package Thermal Impedance, θ_{JA}	46.2°C/W (0 lfpm)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{CC} = 2.375V$ to 5.25V; $V_{EE} = 0V$, $T_A = -40$ °C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Positive Supply Voltage		2.375	3.3	5.25	V
I _{EE}	Power Supply Current				60	mA

Table 4B. LVPECL DC Characteristics, $V_{CC} = 3.3V$, $V_{EE} = 0V$; $T_A = -40$ °C to 85°C

				-40°C			25°C			80°C		
Symbol	Parameter		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
V_{OH}	Output High Vo	oltage; NOTE 1	2.175	2.275	2.38	2.225	2.295	2.37	2.295	2.33	2.365	V
V _{OL}	Output Low Vo	oltage; NOTE 1	1.405	1.545	1.68	1.425	1.52	1.615	1.44	1.535	1.63	V
V _{IH}	Input High Volta	ge (Single-ended)	2.075		2.36	2.075		2.36	2.075		2.36	V
V_{IL}	Input Low Voltag	ge (Single-ended)	1.43		1.765	1.43		1.765	1.43		1.765	V
V _{PP}	Peak-to-Peak	Input Voltage	150	800	1200	150	800	1200	150	800	1200	V
V _{CMR}	Input High Volt Range; NOTE	age Common Mode 2, 3	1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input High Current	PCLKA, PCLKB nPCLKA, nPCLKB			200			200			200	μΑ
	Input	PCLKA, PCLKB	-10			-10			-10			μΑ
¹IL	Low Current	nPCLKA, nPCLKB	-200			-200			-200			μΑ

Input and output parameters vary 1:1 with $V_{CC}.\ V_{EE}$ can vary +0.925V to -0.5V.

NOTE 1: Outputs terminated with 50 $\!\Omega$ to V $_{CC}$ – 2V.

NOTE 2: Common mode voltage is defined as V_{IH}.

NOTE 3: For single-ended applications, the maximum input voltage for PCLKx, nPCLKx is V_{CC} + 0.3V.

.Table 4C. LVPECL DC Characteristics, V_{CC} = 2.5V, V_{EE} = 0V; T_A = -40°C to 85°C

				-40°C			25°C			80°C		
Symbol	Parameter		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
V _{OH}	Output High Vo	oltage; NOTE 1	1.375	1.475	1.58	1.425	1.495	1.57	1.495	1.53	1.565	V
V _{OL}	Output Low Voltage; NOTE 1		0.605	0.745	0.88	0.625	0.72	0.815	0.64	0.735	0.83	٧
V _{IH}	Input High Volta	ge (Single-ended)	1.275		1.56	1.275		1.56	1.275		-0.8	٧
V _{IL}	Input Low Volta	ge (Single-ended)	0.63		0.965	0.63		0.965	0.63		0.965	٧
V _{PP}	Peak-to-Peak	Input Voltage	150	800	1200	150	800	1200	150	800	1200	٧
V _{CMR}	Input High Volt Range; NOTE	age Common Mode 2, 3	1.2		2.5	1.2		2.5	1.2		2.5	٧
I _{IH}	Input High Current	PCLKA, PCLKB nPCLKA, nPCLKB			200			200			200	μΑ
	Input	PCLKA, PCLKB	-10			-10			-10			μΑ
¹ 1∟	Low Current	nPCLKA, nPCLKB	-200			-200			-200			μΑ

Input and output parameters vary 1:1 with $V_{CC}.\ V_{EE}$ can vary +0.925V to -0.5V.

NOTE 1: Outputs terminated with 50 $\!\Omega$ to V $_{CC}$ – 2V.

NOTE 2: Common mode voltage is defined as V_{IH} .

NOTE 3: For single-ended applications, the maximum input voltage for PCLKx, nPCLKx is V_{CC} + 0.3V.

Table 4D. LVPECL DC Characteristics, $V_{CC} = 5V$, $V_{EE} = 0V$; $T_A = -40^{\circ}C$ to $85^{\circ}C$

				-40°C			25°C			80°C		
Symbol	Parameter		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
V _{OH}	Output High V	oltage; NOTE 1	-1.125	-1.025	-0.92	-1.075	-1.005	-0.93	-1.005	-0.97	-0.935	V
V _{OL}	Output Low Voltage; NOTE 1		-1.895	-1.755	-1.62	-1.875	-1.78	-1.685	-1.86	-1.76 5	-1.67	V
V _{IH}	Input High Volta	age (Single-ended)	-1.225		-0.94	-1.225		-0.94	-1.225		-0.94	V
V _{IL}	Input Low Volta	age (Single-ended)	-1.87		-1.535	-1.87		-1.535	-1.87		-1.535	V
V _{PP}	Peak-to-Peak	Input Voltage	150	800	1200	150	800	1200	150	800	1200	V
V _{CMR}	Input High Vo Mode Range;	Itage Common NOTE 2, 3	V _{EE} +1.2		0	V _{EE} +1.2		0	V _{EE} +1.2		0	V
I _{IH}	Input High Current	PCLKA, PCLKB nPCLKA, nPCLKB			200			200			200	μΑ
	Input	PCLKA, PCLKB	-10			-10			-10			μΑ
IIL.	Low Current	nPCLKA, nPCLKB	-200			-200			-200			μΑ

Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.925V to -0.5V.

NOTE 1: Outputs terminated with 50Ω to $\mbox{V}_{\mbox{CC}}$ – 2V.

NOTE 2: Common mode voltage is defined as V_{IH}.

NOTE 3: For single-ended applications, the maximum input voltage for PCLKx, nPCLKx is V_{CC} + 0.3V.

Table 4E. ECL DC Characteristics, V_{CC}	$0V$, $V_{FF} = -5.25V$ to $-2.375V$; $T_A = -40^{\circ}C$ to $85^{\circ}C$
--	---

				-40°C			25°C		80°C			
Symbol	Parameter		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
V _{OH}	Output High Voltage; NOTE 1		-1.125	-1.025	-0.92	-1.075	-1.005	-0.93	-1.005	-0.97	-0.935	V
V _{OL}	Output Low Voltage; NOTE 1		-1.895	-1.755	-1.62	-1.875	-1.78	-1.685	-1.86	-1.765	-1.67	V
V _{IH}	Input High Volt	age (Single-ended)	-1.225		-0.94	-1.225		-0.94	-1.225		-0.94	V
V _{IL}	Input Low Volta	age (Single-ended)	-1.87		-1.535	-1.87		-1.535	-1.87		-1.535	V
V _{PP}	Peak-to-Peak	Input Voltage	150	800	1200	150	800	1200	150	800	1200	V
V _{CMR}	Input High Vo Mode Range;	Itage Common NOTE 2, 3	V _{EE} +1.2		0	V _{EE} +1.2		0	V _{EE} +1.2		0	V
I _{IH}	Input High Current	PCLKA, PCLKB nPCLKA, nPCLKB			200			200			200	μΑ
	Input	PCLKA, PCLKB	-10			-10			-10			μΑ
IIL.	Low Current	nPCLKA, nPCLKB	-200			-200			-200			μΑ

Input and output parameters vary 1:1 with $V_{CC}.\ V_{EE}$ can vary +0.925V to -0.5V.

NOTE 1: Outputs terminated with 50Ω to $\mbox{V}_{\mbox{CC}}$ – 2V.

NOTE 2: Common mode voltage is defined as V_{IH}.

NOTE 3: For single-ended applications, the maximum input voltage for PCLKx, nPCLKx is $V_{CC} + 0.3V$

AC Electrical Characteristics

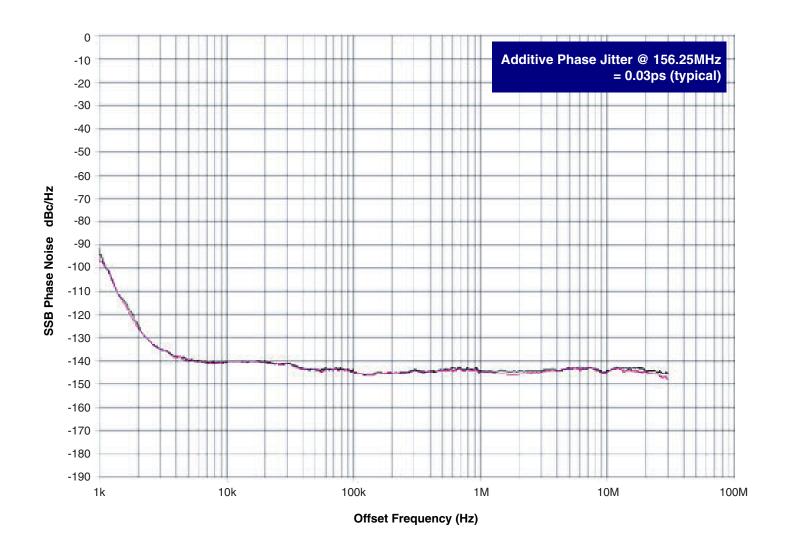
Table 5. AC Characteristics, $V_{CC} = 0V$, $V_{EE} = -5.25V$ to -2.375V or; $V_{CC} = 2.375V$ to 5.25V, $V_{EE} = 0V$; $T_A = -40^{\circ}C$ to $85^{\circ}C$

				-40°C			25°C			80°C		
Symbol	Parameter		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
f _{MAX}	Output Frequence	су		>2			>2			>2		GHz
tP _{LH}	Propagation Dela	ay; Low-to-High;	300	410	510	330	425	520	360	465	570	ps
tP _{HL}	Propagation Dela	ay; High-to-Low;	300	410	510	330	425	520	360	465	570	ps
tsk(o)	Output Skew; NO	OTE 2, 4			40			40			40	ps
tsk(odc)	Output Duty Cyc	le Skew			40			40			40	ps
tsk(pp)	Part-to-Part Skev	w; NOTE 3, 4			250			250			250	ps
<i>t</i> jit	Buffer Additive P RMS; refer to Ad Jjitter Section	,		0.03			0.03			0.03		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	120	180	250	120	180	250	120	180	250	ps

All parameters are measured at $f \le 1$ GHz, unless otherwise noted.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

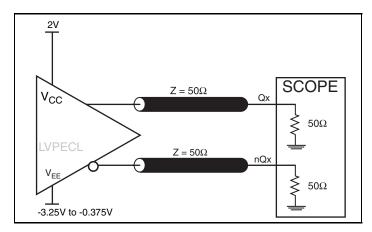
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points.

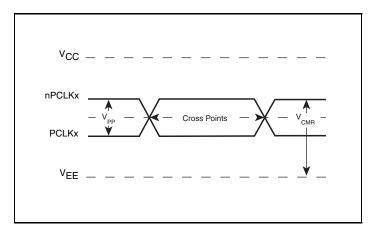

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

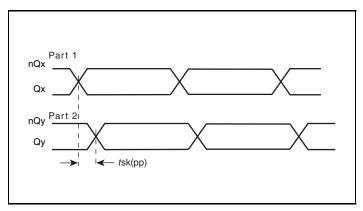
Additive Phase Jitter

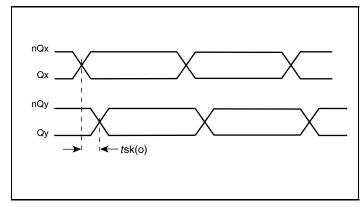
The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band

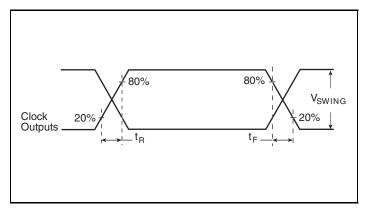

to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

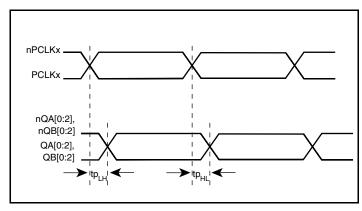

As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor

of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

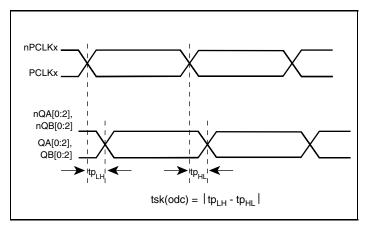

Parameter Measurement Information


LVPECL Output Load AC Test Circuit


Differential Input Level


Part-to-Part Skew

Output Skew



Output Rise/Fall Time

Propagation Delay

Parameter Measurement Information, continued

Output Duty Cycle Skew

Application Information

Wiring the Differential Input to Accept Single-ended LVCMOS Levels

Figure 1 shows an example of the differential input that can be wired to accept single-ended LVCMOS levels. The reference voltage level V_{BB} generated from the device is connected to the

negative input. The C1 capacitor should be located as close as possible to the input pin.

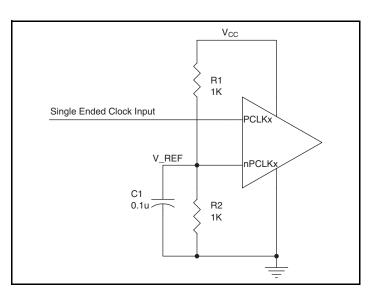


Figure 1. Single-Ended LVCMOS Signal Driving Differential Input

LVPECL Clock Input Interface

The PCLK/nPCLK accepts LVPECL, LVDS, CML, SSTL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 2A to 2F show interface examples for the HiPerClockS PCLK/nPCLK input driven by the

most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

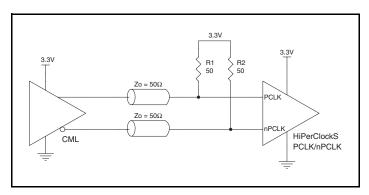


Figure 2A. HiPerClockS PCLK/nPCLK Input
Driven by an Open Collector CML Driver

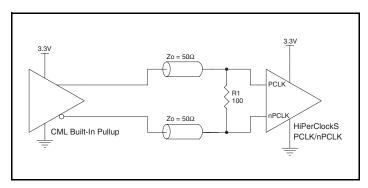


Figure 2B. HiPerClockS PCLK/nPCLK Input
Driven by a Built-In Pullup CML Driver

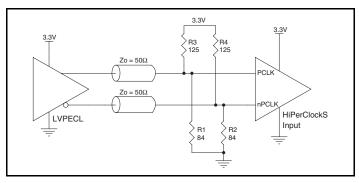


Figure 2C. HiPerClockS PCLK/nPCLK Input Driven by a 3.3V LVPECL Driver

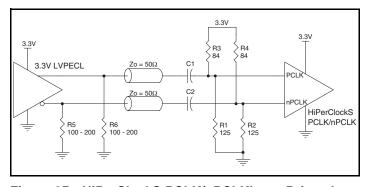


Figure 2D. HiPerClockS PCLK/nPCLKInput Driven by a 3.3V LVPECL Driver with AC Couple

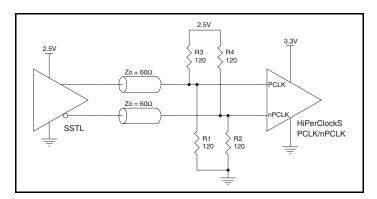


Figure 2E. HiPerClockS PCLK/nPCLK Input Driven by an SSTL Driver

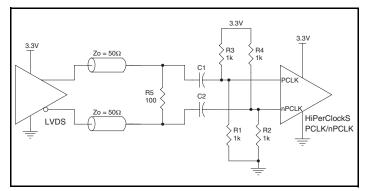


Figure 2F. HiPerClockS PCLK/nPCLK Input Driven by a 3.3V LVDS Driver

Recommendations for Unused Output Pins

Inputs:

PCLK/nPCLK INPUTS

For applications not requiring the use of a differential input, both the PCLK and nPCLK pins can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from PCLK to ground. For applications

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A 1k Ω resistor can be used.

Outputs:

LVPECL Outputs

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 3A and 3B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

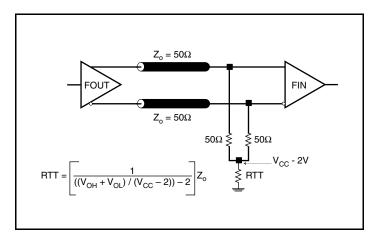


Figure 3A. 3.3V LVPECL Output Termination

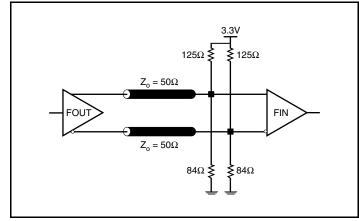


Figure 3B. 3.3V LVPECL Output Termination

Termination for 2.5V LVPECL Outputs

Figure 4A and Figure 4B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to $V_{CC}-2V$. For $V_{CC}=2.5V$, the $V_{CC}-2V$ is very close to

ground level. The R3 in Figure 4B can be eliminated and the termination is shown in *Figure 4C*.

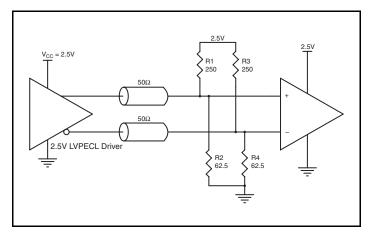


Figure 4A. 2.5V LVPECL Driver Termination Example

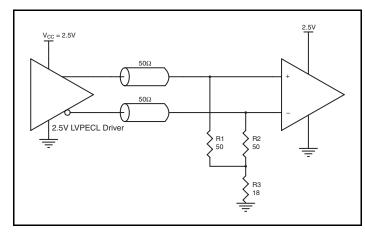


Figure 4B. 2.5V LVPECL Driver Termination Example

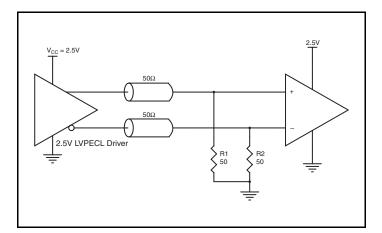


Figure 4C. 2.5V LVPECL Driver Termination Example

Termination for 5V LVPECL Outputs

This section shows examples of 5V LVPECL output termination. Figure 5A shows standard termination for 5V LVPECL. The termination requires matched load of 50Ω resistors pull down to

 $V_{CC} - 2V = 3V$ at the receiver. *Figure 5B* shows Thevenin equivalence of Figure 5A. In actual application where the 3V DC power supply is not available, this approached is normally used.

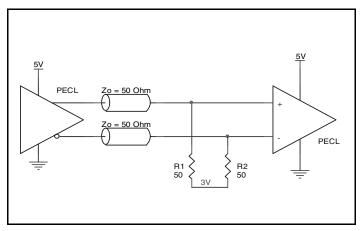


Figure 5A. 5V LVPECL Driver Termination Example

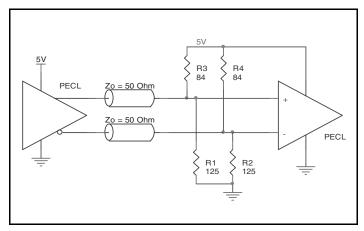


Figure 5B. 5V LVPECL Driver Termination Example

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS853013. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS853013 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 5.25V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 5.25V * 60mA = 315mW
- Power (outputs)_{MAX} = 30.94mW/Loaded Output pair
 If all outputs are loaded, the total power is 6 * 30.94mW = 185.64mW

Total Power_MAX (3.8V, with all outputs switching) = 315mW + 185.64mW = 500.64mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

 T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 46.2°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}\text{C} + 0.501\text{W} * 46.2^{\circ}\text{C/W} = 108.1^{\circ}\text{C}$. This is below the limit of 125°C .

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer).

Table 6. Thermal Resistance θ_{JA} for 20 Lead SOIC Forced Convection

θ_{JA} by Velocity									
Linear Feet per Minute	0	200	500						
Single-Layer PCB, JEDEC Standard Test Boards	83.2°C/W	65.7°C/W	57.5°C/W						
Multi-Layer PCB, JEDEC Standard Test Boards	46.2°C/W	39.7°C/W	36.8°C/W						

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in Figure 6.

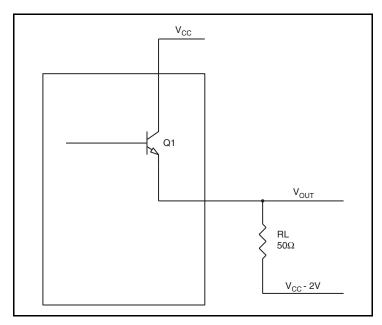


Figure 6. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of $V_{CC} - 2V$.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.935V$ $(V_{CC_MAX} V_{OH_MAX}) = 0.935V$
- For logic low, V_{OUT} = V_{OL_MAX} = V_{CC_MAX} 1.67V
 (V_{CC_MAX} V_{OL_MAX}) = 1.67V

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

$$Pd_H = [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - (V_{CC_MAX} - V_{OH_MAX}))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - 0.935V)/50\Omega] * 0.935V = \textbf{19.92mW}$$

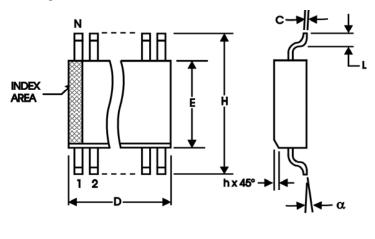
$$Pd_L = [(V_{OL_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - (V_{CC_MAX} - V_{OL_MAX}))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - 1.67V)/50\Omega] * 1.67V = \textbf{11.02mW}$$

Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 20 Lead SOIC

θ_{JA} vs. Air Flow						
Linear Feet per Minute	0	200	500			
Single-Layer PCB, JEDEC Standard Test Boards	83.2°C/W	65.7°C/W	57.5°C/W			
Multi-Layer PCB, JEDEC Standard Test Boards	46.2°C/W	39.7°C/W	36.8°C/W			
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.						


Transistor Count

The transistor count for ICS853013 is: 226

Pin compatible with MC100LVEL13 and MC100EL13

Package Outline and Package Dimensions

Package Outline - M Suffix for 20 Lead SOIC

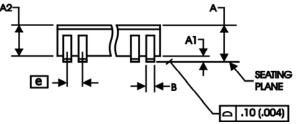


Table 8. Package Dimensions for 20 Lead SOIC

300 Millimeters						
All Dimensions in Millimeters						
Symbol	Minimum	Maximum				
N	20					
Α		2.65				
A1	0.10					
A2	2.05	2.55				
В	0.33	0.51				
С	0.18	0.32				
D	12.60	13.00				
E	7.40	7.60				
е	1.27 Basic					
Н	10.00	10.65				
h	0.25	0.75				
L	0.40	0.40 1.27				
α	0°	7°				

Reference Document: JEDEC Publication 95, MS-013, MS-119

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
853013AM	ICS853013AM	20 Lead SOIC	Tube	-40°C to 85°C
853013AMT	ICS853013AM	20 Lead SOIC	1000 Tape & Reel	-40°C to 85°C
853013AMLF	ICS853013AMLF	"Lead-Free" 20 Lead SOIC	Tube	-40°C to 85°C
853013AMLFT	ICS853013AMLF	"Lead-Free" 20 Lead SOIC	1000 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History Sheet

Rev	Table	Page	Description of Change	Date
А	Т8	8 16	Added Recommendations for Unused Input and Output Pins. Ordering Information Table - added Lead-Free marking.	10/19/05
В	T4B T4C T4D T4E	3 4 4 5 9 12 13	3.3V LVPECL DC Characteristics - changed I _{IH} max. from 150μA to 200μA. Changed I _{IL} min. from -150μA to -200μA. 2.5V LVPECL DC Characteristics - changed I _{IH} max. from 150μA to 200μA. Changed I _{IL} min. from -150μA to -200μA. 5V LVPECL DC Characteristics - changed I _{IH} max. from 150μA to 200μA. Changed I _{IL} min. from -150μA to -200μA. ECL DC Characteristics - changed I _{IH} max. from 150μA to 200μA. Changed I _{IL} min. from -150μA to -200μA. Changed I _{IL} min. from -150μA to -200μA. Updated LVPECL Clock Input Interface Section. Added Termination for 5V LVPECL Outputs. Power Considerations - updated Junction Temperature equation with worst case thermal resistance of 46.2°C/W.	2/7/08

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775 For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia

Integrated Device Technology IDT (S) Pte. Ltd. 1 Kallang Sector, #07-01/06 Kolam Ayer Industrial Park Singapore 349276 +65 67443356 Fax: +65 67441764

Japan

NIPPON IDT KK Sanbancho Tokyu, Bld. 7F, 8-1 Sanbancho Chiyoda-ku, Tokyo 102-0075 +81 3 3221 9822 Fax: +81 3 3221 9824

Europe

IDT Europe, Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England +44 (0) 1372 363 339 Fax: +44 (0) 1372 37885 idteurope@idt.com

