

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

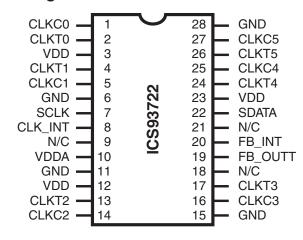
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low Cost DDR Phase Lock Loop Zero Delay Buffer

93722

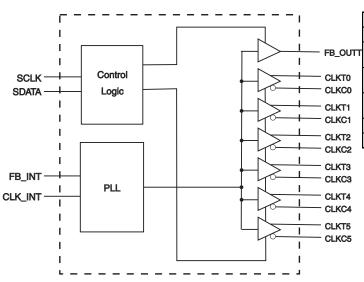
Description

DDR Zero Delay Clock Buffer


Output Features

- · Low skew, low jitter PLL clock driver
- I²C for functional and output control
- Feedback pins for input to output synchronization
- Spread Spectrum tolerant inputs
- 3.3V tolerant CLK_INT input

Key Specifications


- PEAK PEAK jitter (66MHz): <120ps
- PEAK PEAK jitter (>100MHz): <75ps
- CYCLE CYCLE jitter (66MHz):<110ps
 CYCLE CYCLE jitter (100MHz): 65pa
- CYCLE CYCLE jitter (>100MHz):<65ps
- OUTPUT OUTPUT skew: <100ps
- Output Rise and Fall Time: 650ps 950ps
- DUTY CYCLE: 49.5% 50.5%

Pin Configuration

28-Pin SSOP

Functional Block Diagram

Functionality Table

IN	PUTS		OUTPUT	PLL State	
AVDD	CLK_INT	CLKT	CLKC	FB_OUT	PLL State
2.5V (nom)	L	L	Н	L	on
2.5V (nom)	Н	Н	L	Н	on
2.5V (nom)	<20MHz	Z	Z	Z	off
GND	L	L	Н	L	Bypassed/off
GND	Н	Н	Ĺ	Н	Bypassed/off

Pin Description

PIN NUMBER	PIN NAME	TYPE	DESCRIPTION
6, 11, 15, 28	GND	PWR	Ground
27, 25, 16, 14, 5, 1	CLKC(5:0)	OUT	"Complementary" clocks of differential pair outputs.
26, 24, 17, 13, 4, 2	CLKT(5:0)	OUT	"True" Clock of differential pair outputs.
3, 12, 23	VDD	PWR	Power supply 2.5V
7	SCLK	IN	Clock input of I ² C input, 5V tolerant input
8	CLK_INT	IN	"True" reference clock input
9, 18, 21	N/C	-	Not connected
10	VDDA	PWR	Analog power supply, 2.5V
19 ·	FB_OUTT	OUT	"True" Feedback output, dedicated for external feedback. It switches at the same frequency as the CLK. This output must be wired to FB_INT.
20	FB_INT	IN	"True" Feedback input, provides feedback signal to the internal PLL for synchronization with CLK_INT to eliminate phase error.
22	SDATA	IN	Data input for I ² C serial input, 5V tolerant input

Bytes 0 to 4 are reserved power up default = 1.

Byte 5: Output Control (1= enable, 0 = disable)

Bit	PIN#	PWD	DESCRIPTION
Bit7	2, 1	1	CLK0 (T&C)
Bit6	4, 5	1	CLK1 (T&C)
Bit5		1	Reserved
Bit4		1	Reserved
Bit3	13, 14	1	CLK2 (T&C)
Bit2	17, 16	1	CLK3 (T&C)
Bit1		1	Reserved
Bit0		1	Reserved

Note: PWD = Power Up Default

Byte 6: Output Control (1= enable, 0 = disable)

Bit	PIN#	PWD	DESCRIPTION
Bit7		1	Reserved
Bit6		1	Reserved
Bit5		1	Reserved
Bit4		1	Reserved
Bit3	24, 25	1	CLK4 (T&C)
Bit2		1	Reserved
Bit1	26, 27	1	CLK5 (T&C)
Bit0		1	Reserved

Absolute Max

Supply Voltage (VDD & AVDD) -0.5V to 3.6V

Logic Inputs GND -0.5 V to $\text{V}_{DD} + 0.5 \text{ V}$

Ambient Operating Temperature 0°C to +85°C

Case Temperature 115°C

Storage Temperature -65°C to +150°C

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input / Supply / Common Output Parameters

 $T_A = 0 - 70^{\circ}C$; Supply Voltage $V_{DD} = 2.5 \text{ V} + -0.2 \text{ V}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Current	I _{IH}	$V_{IN} = V_{DD}$ or GND		1	10	μΑ
Input Low Current	I _{IL}	$V_{IN} = V_{DD}$ or GND	-100	-20		μΑ
Operating Supply Current	I _{D D2.5}	$C_L = 0 pF$ at 133 MHz		275	325	mA
Operating Supply Current	I _{DDPD}	$C_L = 0 pF$			100	μΑ
Output High Current	l _{он}	$V_{DD} = 2.3V, V_{OUT} = 1V$		-43	-18	mA
Output High Current	l _{OL}	$V_{DD} = 2.3V, V_{OUT} = 1.2V$	26	43		mA
High Impedance Output Current	loz	$V_{DD} = 2.7V$, $V_{OUT} = V_{DD}$ or GND			10	μΑ
Input Clamp Voltage	V_{IK}	I _{IN} = -18 mA;				V
Lligh lovel Output Valtage	V	V_{DD} = min to max, I_{OH} = -1 mA	2.1	2.42		V
High-level Output Voltage	V _{OH}	$V_{DD} = 2.3V, I_{OH} = -12mA$		1.87		V
Lavy lavyal Overset Valta as	V_{OL}	V_{DD} = min to max, I_{OH} = 1mA		0.04	0.1	V
Low-level Output Voltage		$V_{DD} = 2.3V, I_{OH} = 12mA$		0.35	0.6	V
Input Capacitance ¹	C _{IN}	$V_{IN} = V_{DD}$ or GND		2		pF
Output Capacitance ¹	C_{OUT}	$V_{OUT} = V_{DD}$ or GND		3		pF

^{1.} Guaranteed by design, not 100% tested in production.

Recommended Operating Condition (see note 1)

 $T_A = 0 - 70$ °C; Supply Voltage AV_{DD}, $V_{DD} = 2.5 \text{ V} + /-0.2 \text{V}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Analog / Core Supply Voltage	V_{DD} , AV_{DD}		2.3	2.5	2.7	V
Innut Voltage Level	V_{IL}				V _{DD} /2 - 0.5V	V
Input Voltage Level	V_{IH}		$V_{DD}/2 + 0.5V$			V
Inpu Duty Cycle	I _{DC}		40		60	
Input max jitter	I _{TCYC}				500	ps

Timing Requirements

 $T_A = 0 - 70$ °C; Supply Voltage AV_{DD}, $V_{DD} = 2.5 \text{ V} + /-0.2 \text{V}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Clock Frequency ¹	freq _{op}		66		200	MHz
Input Clock Duty Cycle ¹	d _{tin}		40		60	%
Clock Stabilization ¹	t _{STAB}	from $V_{DD} = 2.5V$ to 1% target frequency			100	- s

^{1.} Guaranteed by design, not 100% tested in production.

Switching Characteristics

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 2.5 \text{ V} + /-0.2 \text{V}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Absolute Jitter ¹	T _{iabs}	66 MHz			120	20
Absolute Jitter	╹ jabs	100 - 200 MHz			75	ps
Cycle to cycle Jitter ^{1,2}	т	66 MHz		50	110	20
Cycle to cycle Jitter	T _{cyc-cyc}	100 - 200 MHz		25	65	ps
Phase Error ¹	t _(phase error)	CLK_INT to FB_INT	-150	50	150	ps
Output to output Skew ¹	T_{skew}	V _T = 50%		70	100	ps
Pulse Skew ¹	T _{skewp}				100	ps
Duty Ovala (differential) 1,3	D _C	$V_T = 50\%$, 66 MHz to 100 MHz	49.5	50	50.5	%
Duty Cycle (differential) ^{1,3}	D _C	$V_T = 50\%$, 101 MHz to 167 MHz	49	50	51	70
Rise Time, Fall Time ¹	t _R , t _F	Single-ended 20 - 80 %	450	550	950	ps
Thise time, Fall time	ነዘን ነተ	Load = 120 ⁻ / 12 pF	750	550	550	μδ

- 1. Guaranteed by design, not 100% tested in production.
- 2. Refers to transistion on non-inverting output.
- 3. While the pulse skew is almost constant over frequency, the duty cycle error increases at higher frequencies. This is due to the formula: duty cycle = t_{wH} / t_{C} , where the cycle time (t_{C}) decreases as the frequency increases.

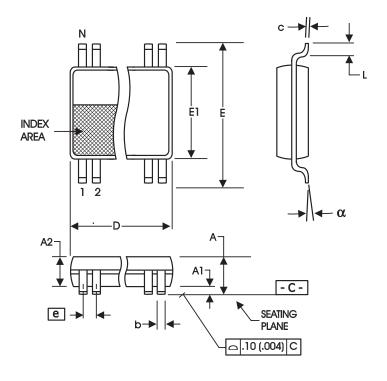
General I²C serial interface information

The information in this section assumes familiarity with I^2C programming. For more information, contact IDT for an I^2C programming application note.

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address D4(H)
- IDT clock will acknowledge
- · Controller (host) sends a dummy command code
- IDT clock will acknowledge
- Controller (host) sends a dummy byte count
- IDT clock will acknowledge
- Controller (host) starts sending first byte (Byte 0) through byte 6
- IDT clock will acknowledge each byte one at a time.
- · Controller (host) sends a Stop bit

How to Write:				
Controller (Host)	IDT (Slave/Receiver)			
Start Bit				
Address				
D4 _(H)				
	ACK			
Dummy Command Code				
	ACK			
Dummy Byte Count				
	ACK			
Byte 0				
	ACK			
Byte 1				
	ACK			
Byte 2				
	ACK			
Byte 3	1011			
Dute 4	ACK			
Byte 4	ACK			
Byto 5	ACK			
Byte 5	ACK			
Byte 6	ACK			
Dyte 0	ACK			
Byte 7	AUN			
2,107	ACK			
Stop Bit	AON			


How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the read address D5 (H)
- IDT clock will acknowledge
- IDT clock will send the byte count
- · Controller (host) acknowledges
- IDT clock sends first byte (Byte 0) through byte 7
- · Controller (host) will need to acknowledge each byte
- Controller (host) will send a stop bit

How to Read:				
Controller (Host)	IDT (Slave/Receiver)			
Start Bit				
Address				
D5 _(H)				
	ACK			
	Byte Count			
ACK				
	Byte 0			
ACK				
	Byte 1			
ACK				
	Byte 2			
ACK				
	Byte 3			
ACK				
	Byte 4			
ACK				
	Byte 5			
ACK				
	Byte 6			
ACK				
	Byte 7			
Stop Bit				

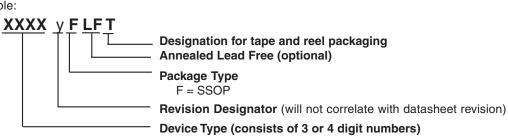
Notes:

- 1. The IDT clock generator is a slave/receiver, I²C component. It can read back the data stored in the latches for verification. **Read-Back will support Intel PIIX4** "Block-Read" protocol.
- 2. The data transfer rate supported by this clock generator is 100K bits/sec or less (standard mode)
- 3. The input is operating at 3.3V logic levels.
- 4. The data byte format is 8 bit bytes.
- 5. To simplify the clock generator I²C interface, the protocol is set to use only "**Block-Writes**" from the controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. The Command code and Byte count shown above must be sent, but the data is ignored for those two bytes. The data is loaded until a Stop sequence is issued.
- 6. At power-on, all registers are set to a default condition, as shown.

SYMBOL	In Milli			ches	
	COMMON DIMENSIONS		COMMON DIMENSION		
	MIN	MAX	MIN	MAX	
Α	•	2.00	•	.079	
A1	0.05	-	.002	-	
A2	1.65	1.85	.065	.073	
b	0.22	0.38	.009	.015	
С	0.09	0.25	.0035	.010	
D	SEE VAR	RIATIONS	SEE VARIATIONS		
Е	7.40	8.20	.291	.323	
E1	5.00	5.60	.197	.220	
е	0.65 E	BASIC	0.0256 BASIC		
L	0.55	0.95	.022	.037	
N	SEE VARIATIONS		SEE VARIATIONS		
α	0°	8°	0°	8°	

VARIATIONS

N	D m	nm.	D (inch)		
IN	MIN	MAX	MIN	MAX	
28	9.90	10.50	0.50 .390 .4		
			MO-150 JEDEC	6/1/00 Rev B	


MO-150 JEDEC Doc.# 10-0033

209 mil SSOP

Ordering Information

93722yFLFT

Example:

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

408-284-6578 pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

