: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

System Clock Chip for ATI RS480 K8-based Systems

Recommended Application:

ATI RS480 systems using AMD K8 processors

Output Features:

- 3-14.318 MHz REF clocks
- 1 - USB_48MHz USB clock
- 1 - HyperTransport 66 MHz clock seed
- 1 - PCI 33 MHz clock seed
- 2 - Pairs of AMD K8 clocks
- 6 - Pairs of SRC/PCI Express* clocks
- 2 - Pairs of ATIG (SRC/PCI Express) clocks

Features:

- 2 - Programmable Clock Request pins for SRC clocks
- Spread Spectrum for EMI reduction
- Outputs may be disabled via SMBus
- External crystal load capacitors for maximum frequency accuracy

Pin Configuration				
X1	1		56	VDDREF
X2	2		55	GND
VDD48	3		54	**FS0/REF0
USB_48MHz	4		53	**FS1/REF1
GND	5		52	REF2
NC	6		51	VDDPCI
SCLK	7		50	PCICLK0
SDATA	8		49	GNDPCI
**FS2	9		48	VDDHTT
**CLKREQA\#	10		47	HTTCLKO
**CLKREQB\#	11		46	GNDHTT
SRCCLKT7	12	N	45	CPUCLK8T0
SRCCLKC7	13	$\underset{\sim}{\square}$	44	CPUCLK8C0
VDDSRC	14	5	43	VDDCPU
GNDSRC	15	$\stackrel{8}{8}$	42	GNDCPU
SRCCLKT6	16	0	41	CPUCLK8T1
SRCCLKC6	17		40	CPUCLK8C1
SRCCLKT5	18		39	VDDA
SRCCLKC5	19		38	GNDA
GNDSRC	20		37	IREF
VDDSRC	21		36	GNDSRC
SRCCLKT4	22		35	VDDSRC
SRCCLKC4	23		34	SRCCLKTO
SRCCLKT3	24		33	SRCCLKC0
SRCCLKC3	25		32	VDDATI
GNDSRC	26		31	GNDATI
ATIGCLKT1	27		30	ATIGCLKTO
ATIGCLKC1	28		29	ATIGCLKC0

Note: Pins preceeded by ${ }^{\text {} * * 1}$ ' have a 120 Kohm Internal Pull Down resistor

56 Pin SSOP/TSSOP

Power Groups

Pin Number		Description
VDD	GND	
56	55	PCICLK output
51	49	HTTCLK output
48	46	CPU Outputs
43	42	SRC outputs
14,21,	15,20,	Analog, CPU PLL
32,35	$26,31,36$	USB_48MHz output
39	38	
3	5	

Functionality

FS2	FS1	FS0	CPU	HTT	PCI
			MHz	MHz	MHz
0	0	0	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-Z$
0	0	1	X	$\mathrm{X} / 3$	$\mathrm{X} / 6$
0	1	0	180.00	60.00	30.00
0	1	1	220.00	73.12	36.56
1	0	0	100.00	66.66	33.33
1	0	1	133.33	66.66	33.33
1	1	1	200.00	66.66	33.33

Pin Descriptions

$\begin{gathered} \hline \text { PIN } \\ \# \end{gathered}$	PIN NAME	$\begin{gathered} \hline \text { PIN } \\ \text { TYPE } \end{gathered}$	DESCRIPTION
1	X1	IN	Crystal input, Nominally 14.318MHz.
2	X2	OUT	Crystal output, Nominally 14.318 MHz
3	VDD48	PWR	Power pin for the 48MHz output.3.3V
4	USB_48MHz	OUT	48.00 MHz USB clock
5	GND	PWR	Ground pin.
6	NC	N/A	No Connection.
7	SCLK	IN	Clock pin of SMBus circuitry, 5 V tolerant.
8	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.
9	**FS2	IN	Frequency select pin.
10	**CLKREQA\#	IN	Output enable for PCI Express (SRC) outputs. SMBus selects which outputs are controlled. $0=\text { enabled, } 1=\text { tri-stated }$
11	**CLKREQB\#	IN	Output enable for PCI Express (SRC) outputs. SMBus selects which outputs are controlled. 0 = enabled, $1=$ tri-stated
12	SRCCLKT7	OUT	True clock of differential SRC clock pair.
13	SRCCLKC7	OUT	Complement clock of differential SRC clock pair.
14	VDDSRC	PWR	Supply for SRC clocks, 3.3V nominal
15	GNDSRC	PWR	Ground pin for the SRC outputs
16	SRCCLKT6	OUT	True clock of differential SRC clock pair.
17	SRCCLKC6	OUT	Complement clock of differential SRC clock pair.
18	SRCCLKT5	OUT	True clock of differential SRC clock pair.
19	SRCCLKC5	OUT	Complement clock of differential SRC clock pair.
20	GNDSRC	PWR	Ground pin for the SRC outputs
21	VDDSRC	PWR	Supply for SRC clocks, 3.3V nominal
22	SRCCLKT4	OUT	True clock of differential SRC clock pair.
23	SRCCLKC4	OUT	Complement clock of differential SRC clock pair.
24	SRCCLKT3	OUT	True clock of differential SRC clock pair.
25	SRCCLKC3	OUT	Complement clock of differential SRC clock pair.
26	GNDSRC	PWR	Ground pin for the SRC outputs
27	ATIGCLKT1	OUT	True clock of differential SRC clock pair.
28	ATIGCLKC1	OUT	Complementary clock of differential SRC clock pair.

ICS951412B

Pin Descriptions (Continued)

$\begin{aligned} & \text { PIN } \end{aligned}$	PIN NAME	Type	Pin Description
29	ATIGCLKC0	OUT	Complementary clock of differential SRC clock pair.
30	ATIGCLKT0	OUT	True clock of differential SRC clock pair.
31	GNDATI	PWR	Ground for ATI Gclocks, nominal 3.3V
32	VDDATI	PWR	Power supply ATI Gclocks, nominal 3.3V
33	SRCCLKC0	OUT	Complement clock of differential SRC clock pair.
34	SRCCLKT0	OUT	True clock of differential SRC clock pair.
35	VDDSRC	PWR	Supply for SRC clocks, 3.3V nominal
36	GNDSRC	PWR	Ground pin for the SRC outputs
37	IREF	OUT	This pin establishes the reference current for the differential current-mode output pairs. This pin requires a fixed precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the standard value.
38	GNDA	PWR	Ground pin for the PLL core.
39	VDDA	PWR	3.3V power for the PLL core.
40	CPUCLK8C1	OUT	Complementary clock of differential 3.3V push-pull K 8 pair.
41	CPUCLK8T1	OUT	True clock of differential 3.3V push-pull K 8 pair.
42	GNDCPU	PWR	Ground pin for the CPU outputs
43	VDDCPU	PWR	Supply for CPU clocks, 3.3V nominal
44	CPUCLK8C0	OUT	Complementary clock of differential 3.3V push-pull K 8 pair.
45	CPUCLK8T0	OUT	True clock of differential 3.3V push-pull K8 pair.
46	GNDHTT	PWR	Ground pin for the HTT outputs
47	HTTCLK0	OUT	3.3V Hyper Transport output
48	VDDHTT	PWR	Supply for HTT clocks, nominal 3.3V.
49	GNDPCI	PWR	Ground pin for the PCl outputs
50	PCICLK0	OUT	PCI clock output.
51	VDDPCI	PWR	Power supply for PCI clocks, nominal 3.3V
52	REF2	OUT	14.318 MHz reference clock.
53	**FS1/REF1	I/O	Frequency select latch input pin / 14.318 MHz reference clock.
54	**FS0/REF0	I/O	Frequency select latch input pin / 14.318 MHz reference clock.
55	GND	PWR	Ground pin.
56	VDDREF	PWR	Ref, XTAL power supply, nominal 3.3V

General Description

The ICS951412B is a main clock synthesizer chip that provides all clocks required for ATI RS480-based systems.
An SMBus interface allows full control of the device.

Block Diagram

Skew Characteristics

Parameter	Description	Test Conditons	Skew Window	Unit
$\mathrm{T}_{\text {sk_CPU_CPU }}$	time independent skew not dependent on V, T changes	measured at x-ing of CPU,	250	ps
T ${ }_{\text {sk_CPU_PCI }}$		measured at x-ing of CPU, 1.5 V of PCl clock	2000	ps
$\mathrm{T}_{\text {Sk_PCI_PCI }}$		measured between rising edge at 1.5 V	500	ps
$\mathrm{T}_{\text {sk_PCl33-HT66 }}$		measured between rising edge at 1.5 V	500	ps
$\mathrm{T}_{\text {Sk_CPU_HT66 }}$		measured between rising edge at 1.5 V	2000	ps
$\mathrm{T}_{\text {sk_CPU_HT66 }}$		measured at x-ing of CPU, 1.5 V of PCI clock	500	ps
$\mathrm{T}_{\text {sk_CPU_CPU }}$	time variant skew varies over V , T changes	measured at x-ing of CPU,	200	ps
T ${ }_{\text {sk_CPU_PCI }}$		measured at x -ing of CPU, 1.5 V of PCI clock	200	ps
$\mathrm{T}_{\text {sk_PCI_PCI }}$		measured between rising edge at 1.5 V	200	ps
$\mathrm{T}_{\text {sk_PCI33-HT66 }}$		measured between rising edge at 1.5 V	200	ps
T ${ }_{\text {Sk_CPU_HT66 }}$		measured between rising edge at 1.5 V	200	ps
$\mathrm{T}_{\text {sk_CPU_HT66 }}$		measured at x -ing of CPU, 1.5 V of PCI clock	200	ps

ICS951412B

General SMBus serial interface information

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D2 ${ }_{(H)}$
- ICS clock will acknowledge
- Controller (host) sends the begining byte location $=\mathrm{N}$
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte \mathbf{N} through Byte N + X -1
(see Note 2)
- ICS clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D2 ${ }_{(H)}$
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3 ${ }_{(H)}$
- ICS clock will acknowledge
- ICS clock will send the data byte count $=\mathrm{X}$
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte \boldsymbol{X} (if $\boldsymbol{X}_{(H)}$ was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Index Block Read Operation			
Controller (Host)		ICS (Slave/Receiver)	
T	starT bit		
Slave Address D2 (H) $^{\text {a }}$			
WR			
			ACK
Beginning Byte $=\mathrm{N}$			
			ACK
RT	Repeat starT		
Slave Address D3 ${ }_{(H)}$			
RD	ReaD		
			ACK
		Data Byte Count = X	
ACK			
		$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\times}}$	Beginning Byte N
ACK			
			\bigcirc
\bigcirc			\bigcirc
\bigcirc			\bigcirc
\bigcirc			
			Byte $\mathrm{N}+\mathrm{X}-1$
N	Not acknowledge		
P	stoP bit		

Table1: CPU Frequency Selection Table

$\begin{gathered} \text { CPU } \\ \text { SS_EN } \\ \text { (B0:b4) } \end{gathered}$	CPU FS3 (B0:b3)	$\begin{aligned} & \text { CPU } \\ & \text { FS2 } \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & \text { FS1 } \end{aligned}$	$\begin{aligned} & \text { CPU } \\ & \text { FSO } \end{aligned}$	$\begin{gathered} \mathrm{CPU} \\ (\mathrm{MHz}) \end{gathered}$	HTT66 (MHz)	$\begin{aligned} & \mathrm{PCl} 33 \\ & (\mathrm{MHz}) \end{aligned}$	$\begin{gathered} \text { Spread } \\ \% \end{gathered}$
0	0	0	0	0	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z	Hi-Z	None
0	0	0	0	1	X/6	X/12	X/24	None
0	0	0	1	0	180.00	60.00	30.00	None
0	0	0	1	1	220.00	73.33	36.67	None
0	0	1	0	0	100.00	66.67	33.33	None
0	0	1	0	1	133.33	66.67	33.33	None
0	0	1	1	0	166.67	66.67	33.33	None
0	0	1	1	1	200.00	66.67	33.33	None
0	1	0	0	0	186.00	62.00	31.00	None
0	1	0	0	1	214.00	71.33	35.67	None
0	1	0	1	0	190.00	63.33	31.67	None
0	1	0	1	1	210.00	70.00	35.00	None
0	1	1	0	0	102.00	68.00	34.00	None
0	1	1	0	1	136.00	68.00	34.00	None
0	1	1	1	0	170.00	68.00	34.00	None
0	1	1	1	1	204.00	68.00	34.00	None
1	0	0	0	0	169.58	56.53	28.26	-0.5\%
1	0	0	0	1	229.43	76.48	38.24	-0.5\%
1	0	0	1	0	179.55	59.85	29.93	-0.5\%
1	0	0	1	1	219.45	73.15	36.58	-0.5\%
1	0	1	0	0	99.75	66.50	33.25	-0.5\%
1	0	1	0	1	133.00	66.50	33.25	-0.5\%
1	0	1	1	0	166.25	66.50	33.25	-0.5\%
1	0	1	1	1	199.50	66.50	33.25	-0.5\%
1	1	0	0	0	185.54	61.85	30.92	-0.5\%
1	1	0	0	1	106.73	71.16	35.58	-0.5\%
1	1	0	1	0	189.53	63.18	31.59	-0.5\%
1	1	0	1	1	209.48	69.83	34.91	-0.5\%
1	1	1	0	0	101.75	67.83	33.92	-0.5\%
1	1	1	0	1	135.66	67.83	33.91	-0.5\%
1	1	1	1	0	169.58	67.83	33.92	-0.5\%
1	1	1	1	1	203.49	67.83	33.92	-0.5\%

Table2: SRC \& ATIG Frequency Selection Table

Byte 5					$\begin{gathered} \text { SRC(7:3,0), } \\ \text { ATIG(1:0) } \\ (M H z) \end{gathered}$	Spread \%
Bit4	Bit3	Bit2	Bit1	Bit0		
SRC Spread	SRC	SRC	SRC	SRC		
Enable	FS3	FS2	FS1	FSO		
0	0	0	0	0	100.00	0
0	0	0	0	1	100.00	0
0	0	0	1	0	100.00	0
0	0	0	1	1	100.00	0
0	0	1	0	0	101.00	0
0	0	1	0	1	101.00	0
0	0	1	1	0	101.00	0
0	0	1	1	1	101.00	0
0	1	0	0	0	102.00	0
0	1	0	0	1	102.00	0
0	1	0	1	0	102.00	0
0	1	0	1	1	102.00	0
0	1	1	0	0	104.00	0
0		1	0	1	104.00	0
0	1	1	1	0	104.00	0
0	1	1	1	1	104.00	0
1	0	0	0	0	99.75	-0.5\%
1	0	0	0	1	99.75	-0.5\%
1	0	0	1	0	99.75	-0.5\%
1	0	0	1	1	99.75	-0.5\%
1	0	1	0	0	100.74	-0.5\%
1	0	1	0	1	100.74	-0.5\%
1	0	1	1	0	100.74	-0.5\%
1	0	1	1	1	100.74	-0.5\%
1	1	0	0	0	101.74	-0.5\%
1	1	0	0	1	101.74	-0.5\%
1	1	0	1	0	101.74	-0.5\%
1	1	0	1	1	101.74	-0.5\%
1	1	1	0	0	103.74	-0.5\%
1	1	1	0	1	103.74	-0.5\%
1	1	1	1	0	103.74	-0.5\%
1	1	1	1	1	103.74	-0.5\%

SMBus Table: Frequency Select Register

Byt	Pin \#	Name	Control Function	Type	0	1	PWD
Bit 7	-	FS Source	Latched Input or SMBus Frequency Select	RW	Latched Inputs	SMBus	0
Bit 6	-	CPU SS_EN	CPU Spread Enable	RW	OFF	ON	0
Bit 5	-	Reserved	Reserved	RW	Reserved	Reserved	X
Bit 4	-	CPU FS4	Freq Select Bit 4	RW	See Table 1: CPU Frequency Selection		0
Bit 3	-	CPU FS3	Freq Select Bit 3	RW			0
Bit 2	-	CPU FS2	Freq Select Bit 2	RW			Latched
Bit 1	-	CPU FS1	Freq Select Bit 1	RW			Latched
Bit 0	-	CPU FS0	Freq Select Bit 0	RW			Latched

Note: Byte 0 Bit 6, Byte 0 Bit 4 and Byte 5 Bit 4 must be set to '1' to fully enable spread.
SMBus Table: Output Control Register

Byte 1		Pin \#	Name	Control Function	Type	$\mathbf{0}$	$\mathbf{1}$	PWD
Bit 7	50	PCICLK0	Output Enable	RW	Disable	Enable	1	
Bit 6	47	HTTCLK0	Output Enable	RW	Disable	Enable	1	
Bit 5	4	USB_48MHz	Output Enable	RW	Disable	Enable	1	
Bit 4	54	REF0	Output Enable	RW	Disable	Enable	1	
Bit 3	53	REF1	Output Enable	RW	Disable	Enable	1	
Bit 2	52	REF2	Output Enable	RW	Disable	Enable	1	
Bit 1	45,44	CPUCLK8(0)	Output Enable	RW	Disable	Enable	1	
Bit 0	41,40	CPUCLK8(1)	Output Enable	RW	Disable	Enable	1	

SMBus Table: CLKREQB\# Output Control Register

Byte 2		Pin \#	Name	Control Function	Type	$\mathbf{0}$	$\mathbf{1}$	PWD
Bit 7	12,13	REQBSRC7	CLKREQB\# Controls SRC7	RW	Does not control	Controls	0	
Bit 6	16,17	REQBSRC6	CLKREQB\# Controls SRC6	RW	Does not control	Controls	0	
Bit 5	18,19	REQBSRC5	CLKREQB\# Controls SRC5	RW	Does not control	Controls	0	
Bit 4	22,23	REQBSRC4	CLKREQB\# Controls SRC4	RW	Does not control	Controls	0	
Bit 3	24,25	REQBSRC3	CLKREQB\# Controls SRC3	RW	Does not control	Controls	0	
Bit 2	-	Reserved	Reserved	RW	Reserved	Reserved	X	
Bit 1	-	Reserved	Reserved	RW	Reserved	Reserved	X	
Bit 0	34,33	REQBSRC0	CLKREQB\# Controls SRC0	RW	Does not control	Controls	0	

ICS951412B

SMBus Table: SRCCLK(7:3,0), CLKREQA\# Output Control Register

Byte 3		Name	Control Function	Type	0	1	PWD
Bit 7	12,13	SRCCLK7	Master Output control. Enables or disables output, regardless of CLKREQ\# inputs.	RW	Disable	Enable	1
Bit 6	16,17	SRCCLK6		RW	Disable	Enable	1
Bit 5	18,19	SRCCLK5		RW	Disable	Enable	1
Bit 4	22,23	SRCCLK4		RW	Disable	Enable	1
Bit 3	24,25	SRCCLK3		RW	Disable	Enable	1
Bit 2	34,33	SRCCLK0		RW	Disable	Enable	1
Bit 1	24,25	REQASRC3	CLKREQA\# Controls SRC3	RW	Does not control	Controls	0
Bit 0	34,33	REQASRC0	CLKREQA\# Controls SRC0	RW	Does not control	Controls	0

SMBus Table: SRCCLK(3,0), ATIGCLK Output Control Register

Byte 4	Pin \#	Name	Control Function	Type	0	1	PWD
Bit 7	12,13	REQASRC7	CLKREQA\# Controls SRC7	RW	Does not control	Controls	0
Bit 6	16,17	REQASRC6	CLKREQA\# Controls SRC6	RW	Does not control	Controls	0
Bit 5	18,19	REQASRC5	CLKREQA\# Controls SRC5	RW	Does not control	Controls	0
Bit 4	22,23	REQASRC4	CLKREQA\# Controls SRC4	RW	Does not control	Controls	0
Bit 3	27,28	ATIGCLK1	Output Enable	RW	Disabled	Enabled	1
Bit 2	30,29	ATIGCLK0	controlled by CLKREQ\# pins.	RW	Disabled	Enabled	1
Bit 1	-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 0	4	USB_48Str	48MHz Strength Control	RW	1X	2X	0

Note: Do NOT simultaneously select CLKREQA\# and CLKREQB\# to control an SRC output. Behavior of the device is undefined under these conditions.

SMBus Table: Output Drive and ATIG Frequency Control Register

Byte 5		Pin \#	Name	Control Function	Type	$\mathbf{0}$	$\mathbf{1}$	PWD
Bit 7	52	REF2Str	REF2 Strength Control	RW	1X	2X	0	
Bit 6	-	Reserved	Reserved	RW	Reserved	Reserved	0	
Bit 5	-	Reserved	Reserved	RW	Reserved	Reserved	0	
Bit 4	-	SRC SSEN	SRC Spread Enable	RW			0	
Bit 3	-	SRCFS3	Freq Select Bit 3	RW	See Table 2:	0		
Bit 2	-	SRCFS2	Freq Select Bit 2	RW		0		
Bit 1	-	SRCFS1	Freq Select Bit 1	RW		0		
Bit 0	-	SRCFS0	Freq Select Bit 0	RW		0		

SMBus Table: Device ID Register

Byte 6		Pin \#	Name	Control Function	Type	$\mathbf{0}$	$\mathbf{1}$
Bit 7	-	DevID 7	Device ID MSB	R	-	-	0
Bit 6	-	DevID 6	Device ID 6	R	-	-	0
Bit 5	-	DevID 5	Device ID 5	R	-	-	0
Bit 4	-	DevID 4	Device ID4	R	-	-	1
Bit 3	-	DevID 3	Device ID3	R	-	-	0
Bit 2	-	DevID 2	Device ID2	R	-	-	0
Bit 1	-	DevID 1	Device ID1	R	-	-	1
Bit 0	-	DevID 0	Device ID LSB	R	-	-	0

SMBus Table: Vendor ID Register

	Pin \#	Name	Control Function	Type	0	1	PWD
Bit 7	-	RID3	Revision ID	R	-	-	X
Bit 6	-	RID2		R	-	-	X
Bit 5	-	RID1		R	-	-	X
Bit 4	-	RID0		R	-	-	X
Bit 3	-	VID3	VENDOR ID(0001 = ICS)	R	-	-	0
Bit 2	-	VID2		R	-	-	0
Bit 1	-	VID1		R	-	-	0
Bit 0	-	VID0		R	-	-	1

SMBus Table: Byte Count Register

	Pin \#	Name	Control Function	Type	0 1	PWD
Bit 7	-	BC7	Byte Count Programming b(7:0)	RW	Writing to this register will configure how many bytes will be read back, default is 9 bytes.	0
Bit 6	-	BC6		RW		0
Bit 5	-	BC5		RW		0
Bit 4	-	BC4		RW		0
Bit 3	-	BC3		RW		1
Bit 2	-	BC2		RW		0
Bit 1	-	BC1		RW		0
Bit 0	-	BC0		RW		1

Bytes 9 to 21 are reserved

ICS951412B

Absolute Maximum Ratings

```
Supply Voltage
3.8V
Logic Inputs
    GND -0.5 V to VDD +3.8 V
Ambient Operating Temperature
    0.}\textrm{C}\mathrm{ to }+7\mp@subsup{0}{}{\circ}\textrm{C
Storage Temperature
-65 ' C to +150 %
ESD Protection . . . . . . . . . . . . . . . . . . . Input ESD protection usung human body model > 1KV
```

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage	V_{IH}	3.3 V +/-5\%	2		$V_{D D}+0.3$	V	1
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	$3.3 \mathrm{~V}+/-5 \%$	$\mathrm{V}_{\text {SS }}-0.3$		0.8	V	1
Input High Current	I_{H}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	-5		5	uA	1
Input Low Current	$\mathrm{I}_{\text {IL1 }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$; Inputs with no pull-up resistors	-5			uA	1
	1 l L2	$\begin{gathered} \hline \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text {; Inputs with pull-up } \\ \text { resistors } \end{gathered}$	-200			uA	1
Operating Current	$\mathrm{I}_{\text {DD3.30P }}$	all outputs driven			300	mA	
Input Frequency ${ }^{3}$	F_{i}	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$		14.31818		MHz	3
Pin Inductance ${ }^{1}$	$\mathrm{L}_{\text {pin }}$				7	nH	1
Input Capacitance ${ }^{1}$	$\mathrm{C}_{\text {IN }}$	Logic Inputs			5	pF	1
	Cout	Output pin capacitance			6	pF	1
	$\mathrm{CinX}_{\text {In }}$	X1 \& X2 pins			5	pF	1
Clk Stabilization ${ }^{1,2}$	$\mathrm{T}_{\text {STAB }}$	From $V_{D D}$ Power-Up or de-assertion of PD\# to 1st clock			3	ms	1,2
Modulation Frequency		Triangular Modulation	30		33	kHz	1
SMBus Voltage	V_{DD}		2.7		5.5	V	1
Low-level Output Voltage	$\mathrm{V}_{\text {OL }}$	@ IPULLUP			0.4	V	1
Current sinking at $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	IPULLUP		4			mA	1
SCLK/SDATA Clock/Data Rise Time ${ }^{3}$	$\mathrm{T}_{\text {RI2C }}$	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Clock/Data Fall Time ${ }^{3}$	$\mathrm{T}_{\mathrm{Fl} 2 \mathrm{C}}$	(Min VIH + 0.15) to (Max VIL-0.15)			300	ns	1

[^0]Electrical Characteristics - K8 Push Pull Differential Pair
$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \% ; \mathrm{C}_{\mathrm{L}}=A M D 64$ Processor Test Load

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Rising Edge Rate	$\delta \mathrm{V} / \mathrm{st}$	Measured at the AMD64 processor's test load. $0 \mathrm{~V}+/-400 \mathrm{mV}$ (differential measurement)	2		10	V / ns	1
Falling Edge Rate	$\delta \mathrm{V} / \mathrm{st}$		2		10	V/ns	1
Differential Voltage	$\mathrm{V}_{\text {DIFF }}$	Measured at the AMD64 processor's test load. (single-ended measurement)	0.4	1.25	2.3	V	1
Change in $\mathrm{V}_{\text {DIFF_DC }}$ Magnitude	$\Delta \mathrm{V}_{\text {DIFF }}$		-150		150	mV	1
Common Mode Voltage	V_{CM}		1.05	1.25	1.45	V	1
Change in Common Mode Voltage	$\Delta \mathrm{V}_{\mathrm{CM}}$		-200		200	mV	1
Jitter, Cycle to cycle	$\mathrm{t}_{\text {jcyc-cyc }}$	Measurement from differential wavefrom. Maximum difference of cycle time between 2 adjacent cycles.	0	100	200	ps	1
Jitter, Accumulated	t_{ja}	Measured using the JIT2 software package with a Tek 7404 scope. TIE (Time Interval Error) measurement technique: Sample resolution $=50 \mathrm{ps}$, Sample Duration $=10 \mathrm{us}$	-1000		1000		1,2,3
Duty Cycle	$\mathrm{d}_{\text {t }}$	Measurement from differential wavefrom	45		53	\%	1
Output Impedance	$\mathrm{R}_{\text {ON }}$	Average value during switching transition. Used for determining series termination value.	15	35	55	Ω	1
Group Skew	$\mathrm{t}_{\text {sr--skew }}$	Measurement from differential wavefrom			250	ps	1

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ All accumulated jitter specifications are guaranteed assuming that REF is at 14.31818 MHz
${ }^{3}$ Spread Spectrum is off

ICS951412B

Electrical Characteristics - SRC 0.7V Current Mode Differential Pair
$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \% ; \mathrm{C}_{\mathrm{L}}=2 \mathrm{pF}, \mathrm{R}_{\mathrm{S}}=33.2 \Omega, \mathrm{R}_{\mathrm{P}}=49.9 \Omega, \mathrm{I}_{\mathrm{REF}}=475 \Omega$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{x}}$	3000			Ω	1
Voltage High	VHigh	Statistical measurement on single ended signal using oscilloscope math function.	660		850	mV	1,3
Voltage Low	VLow		-150		150		1,3
Max Voltage	Vovs	Measurement on single ended signal using absolute value.			1150	mV	1
Min Voltage	Vuds		-300				1
Crossing Voltage (abs)	Vcross(abs)		250	350	550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges		12	140	mV	1
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1,2
Average period	Tperiod	75.00 MHz nominal	8.5684	8.5714	8.5744	ns	2
		75.00 MHz spread	8.5684		8.6244	ns	2
		100.00 MHz nominal	9.9970	10.0000	10.0030	ns	2
		100.00 MHz spread	9.9970		10.0530	ns	2
		116.67 MHz nominal	13.3303	13.3333	13.3363	ns	2
		116.67 MHz spread	13.3303		13.3863	ns	2
		133.33 MHz nominal	7.4972	7.5002	7.5032	ns	2
		133.33 MHz spread	7.4972		7.5532	ns	2
Absolute min period	Tabsmin	@ 100.00MHz nominal/spread	9.8720			ns	1,2
Rise Time	t_{r}	$\mathrm{V}_{\mathrm{OL}}=0.175 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=0.525 \mathrm{~V}$	175		700	ps	1
Fall Time	t_{f}	$\mathrm{V}_{\mathrm{OH}}=0.525 \mathrm{~V} \mathrm{~V}_{\mathrm{OL}}=0.175 \mathrm{~V}$	175		700	ps	1
Rise Time Variation	d-t t_{r}			30	125	ps	1
Fall Time Variation	$\mathrm{d}-\mathrm{t}_{\mathrm{f}}$			30	125	ps	1
Duty Cycle	$\mathrm{d}_{\text {t3 }}$	Measurement from differential wavefrom	45		55	\%	1
Group Skew	$\mathrm{t}_{\text {src-skew }}$	Measurement from differential wavefrom			250	ps	
Jitter, Cycle to cycle	$\mathrm{t}_{\mathrm{jcyc} \text {-cyc }}$	Measurement from differential wavefrom			100	ps	1

${ }^{1}$ Guaranteed by design and characterization, not 100\% tested in production.
${ }^{2}$ All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is at 14.31818 MHz
${ }^{3} \mathrm{I}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}} /\left(3 x \mathrm{R}_{\mathrm{R}}\right)$. For $\mathrm{R}_{\mathrm{R}}=475 \Omega(1 \%), \mathrm{I}_{\mathrm{REF}}=2.32 \mathrm{~mA}$. $\mathrm{I}_{\mathrm{OH}}=6 \times \mathrm{I}_{\mathrm{REF}}$ and $\mathrm{V}_{\mathrm{OH}}=0.7 \mathrm{~V} @ \mathrm{Z}_{\mathrm{O}}=50 \Omega$.

Electrical Characteristics - PCI33, HTT66 Clocks

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$; VDD $=3.3 \mathrm{~V}+/-5 \% ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1,2
PCI33 Clock period	$\mathrm{T}_{\text {period }}$	33.33 MHz output nominal	29.9910		30.0090	ns	2
		33.33 MHz output spread	29.9910		30.1598	ns	2
HTT66 Clock period	$\mathrm{T}_{\text {period }}$	66.67MHz output nominal	14.9955		15.0045	ns	2
		66.67 MHz output spread	14.9955		15.0799	ns	2
Output High Voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4			V	1
Output Low Voltage	V_{OL}	$\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$			0.55	V	1
Output High Current	IOH	$\mathrm{V}_{\mathrm{OH}} @ \mathrm{MIN}=1.0 \mathrm{~V}$	-33		-46	mA	1
		$\mathrm{V}_{\text {OH }} @ \mathrm{MAX}=3.135 \mathrm{~V}$	-50		-80	mA	1
Output Low Current	$\mathrm{I}_{\text {OL }}$	$\mathrm{V}_{\mathrm{OL}} @ \mathrm{MIN}=1.95 \mathrm{~V}$	47		64	mA	1
		$\mathrm{V}_{\text {OL }}$ @ MAX $=0.4 \mathrm{~V}$	58		91	mA	1
Edge Rate	$\delta \mathrm{V} / \delta \mathrm{t}$	Rising edge rate	1		4	V / ns	1
Edge Rate	$\delta \mathrm{V} / \delta \mathrm{t}$	Falling edge rate	1		4	V / ns	1
Rise Time	$\mathrm{t}_{\mathrm{r} 1}$	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	0.5		2	ns	1
Fall Time	$\mathrm{t}_{\mathrm{f} 1}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.5		2	ns	1
Duty Cycle	$\mathrm{d}_{\mathrm{t} 1}$	$\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$	45		55	\%	1
Skew	$\mathrm{t}_{\text {sk1 }}$	$\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$			500	ps	1
Jitter, Cycle to cycle	$\mathrm{t}_{\text {jcyc-cyc }}$	$\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$			180	ps	1

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that REF is at 14.31818 MHz

Electrical Characteristics $\mathbf{- 4 8} \mathrm{MHz}$, USB

$T_{A}=0-70^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=3.3 \mathrm{~V}+/-5 \% ; \mathrm{C}_{\mathrm{L}}=10-20 \mathrm{pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-200		200	ppm	1,2
Clock period	$\mathrm{T}_{\text {period }}$	48.00 MHz output nominal	20.8257		20.8340	ns	2
Output High Voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4			V	1
Output Low Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$			0.55	V	1
Output High Current	$\mathrm{IOH}^{\text {O }}$	$\mathrm{V}_{\text {OH }} @ \mathrm{MIN}=1.0 \mathrm{~V}$	-33		-46	mA	1
		$\mathrm{V}_{\text {OH }}$ @ MAX $=3.135 \mathrm{~V}$	-50		-80	mA	1
Output Low Current	l OL	$\mathrm{V}_{\text {OL }} @ \mathrm{MIN}=1.95 \mathrm{~V}$	47		64	mA	1
		V_{OL} @ MAX $=0.4 \mathrm{~V}$	58		91	mA	1
Edge Rate	8V/ $\delta \mathrm{t}$	Rising edge rate	1		2	V / ns	1
Edge Rate	¢V/ ft	Falling edge rate	1		2	V / ns	1
Rise Time	$\mathrm{t}_{\mathrm{r} 1}$	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {OH }}=2.4 \mathrm{~V}$	1	1.43	2	ns	1
Fall Time	$\mathrm{t}_{\mathrm{f} 1}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1	1.33	2	ns	1
Duty Cycle	$\mathrm{d}_{\text {t1 }}$	$\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$	45	50	55	\%	1
Jitter, Cycle to cycle	$\mathrm{t}_{\text {jeyc-cyc }}$	$\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$			150	ps	1

[^1]
Electrical Characteristics - REF-14.318MHz

$T_{A}=0-70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \% ; \mathrm{C}_{\mathrm{L}}=10-20 \mathrm{pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1
Clock period	$\mathrm{T}_{\text {period }}$	14.318 MHz output nominal	69.8270		69.8550	ns	2
Output High Voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4			V	1
Output Low Voltage	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$			0.4	V	1
Output High Current	I_{OH}	$\mathrm{V}_{\mathrm{OH}} @ \mathrm{MIN}=1.0 \mathrm{~V}$	-29		-41	mA	1
		$\mathrm{~V}_{\mathrm{OH}} @ \mathrm{MAX}=3.135 \mathrm{~V}$	-45		-71	mA	1
Output Low Current	I_{OL}	$\mathrm{V}_{\mathrm{OL}} @ \mathrm{MIN}=1.95 \mathrm{~V}$	39		54	mA	1
		49		77	mA	1	
Edge Rate	$\delta \mathrm{V} / \delta \mathrm{t}$	Rising edge rate	1		4	$\mathrm{~V} / \mathrm{ns}$	1
Edge Rate	$\delta \mathrm{V} / \delta \mathrm{t}$	Falling edge rate	1		4	$\mathrm{~V} / \mathrm{ns}$	1
Rise Time	$\mathrm{t}_{\mathrm{r} 1}$	$\mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	1		2	ns	1
Fall Time	$\mathrm{t}_{\mathrm{f} 1}$	$\mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1		2	ns	1
Skew	$\mathrm{t}_{\mathrm{sk} 1}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$			500	ps	1
Duty Cycle	$\mathrm{d}_{\mathrm{t} 1}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$	45	50	55	$\%$	1
Jitter, Cycle to cycle	$\mathrm{t}_{\mathrm{icyc}-\mathrm{cyc}}$	$\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$			300	ps	1

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that REF is at 14.31818 MHz

SRC Reference Clock				
Common Recommendations for Differential Routing		Dimension or Value	Unit	Figure
L1 length, Route as non	-coupled 50 ohm trace.	0.5 max	inch	2, 3
L2 length, Route as non	-coupled 50 ohm trace.	0.2 max	inch	2,3
L3 length, Route as non	-coupled 50 ohm trace.	0.2 max	inch	2, 3
Rs		33	ohm	2,3
Rt		49.9	ohm	2,3

Down Device Differential Routing	Dimension or Value	Unit	Figure
L4 length, Route as coupled microstrip 100 ohm differential trace.	2 min to 16 max	inch	2
L4 length, Route as coup led stripline 100 ohm differential trace.	1.8 min to 14.4 max	inch	2

Differential Routing to PCI Express Connector		Dimension or Value	Unit	Figure
L4 length, Route as coupled differential trace.	microstrip 100 ohm	0.25 to 14 max	inch	3
L4 length, Rout e as coupled differential trace.	0.225 min to 12.6 \max	inch	3	

Fig. 1

Fig. 2

Fig. 3

Shared Pin Operation Input/Output Pins

The $1 / O$ pins designated by (input/output) on the ICS951412B serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 5-bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads.

Figure 1 shows a means of implementing this function when a switch or 2 pin header is used. With no jumper is installed the pin will be pulled high. With the jumper in place the pin will be pulled low. If programmability is not necessary, than only a single resistor is necessary. The programming resistors should be located close to the series termination resistor to minimize the current loop area. It is more important to locate the series termination resistor close to the driver than the programming resistor.

To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm (10K) resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period.

Fig. 1

ICS951412B

56-Lead, 300 mil Body, 25 mil, SSOP

SYMBOL	In Millimeters COMMON DIMENSIONS		In Inches COMMON DIMENSIONS	
	MIN	MAX	MIN	MAX
A	2.41	2.80	. 095	. 110
A1	0.20	0.40	. 008	. 016
b	0.20	0.34	. 008	. 0135
c	0.13	0.25	. 005	. 010
D	SEE VARIATIONS		SEE VARIATIONS	
E	10.03	10.68	. 395	. 420
E1	7.40	7.60	. 291	. 299
e	0.635 BASIC		0.025 BASIC	
h	0.38	0.64	. 015	. 025
L	0.50	1.02	. 020	. 040
N	SEE VARIATIONS		SEE VARIATIONS	
a	0°	8°	0°	8°

VARIATIONS

N	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
56	18.31	18.55	.720	.730

Reference Doc.: JEDEC Publication 95, MO-118
10-0034

Ordering Information

ICS951412BFLFT
Example:

56-Lead 6.10 mm . Body, 0.50 mm . Pitch TSSOP

(240 mil)				
SYMBOL	In Millimeters COMMON DIMENSIONS		In InchesCOMMON DIMENSIONS	
	MIN	MAX	MIN	MAX
A	--	1.20	--	. 047
A1	0.05	0.15	. 002	. 006
A2	0.80	1.05	. 032	. 041
b	0.17	0.27	. 007	. 011
c	0.09	0.20	. 0035	. 008
D	SEE VARIATIONS		SEE VARIATIONS	
E	8.10 BASIC		0.319 BASIC	
E1	6.00	6.20	. 236	. 244
e	0.50 BASIC		0.020 BASIC	
L	0.45	0.75	. 018	. 030
N	SEE VARIATIONS		SEE VARIATIONS	
a	0°	8°	0°	8°
aaa	--	0.10	--	. 004

VARIATIONS

N	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
56	13.90	14.10	.547	.555

Reference Doc.: JEDEC Publication 95, MO-153
10-0039

Ordering Information

ICS951412BGLFT

Example:

ICS XXXX B G - LFT

ICS, AV = Standard Device

Revision History

Rev.	Issue Date	Description	Page \#
		R	
A	$6 / 12 / 2006$	Initial Release	-

[^0]: ${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
 ${ }^{2}$ See timing diagrams for timing requirements.
 ${ }^{3}$ Input frequency should be measured at the REFOUT pin and tuned to ideal 14.31818 MHz to meet ppm frequency accuracy on PLL outputs.

[^1]: ${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
 ${ }^{2}$ All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that REF is at 14.31818 MHz

