

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low Power Clock for ATI RS/RD600 series chipsets for AMD CPUs

ICS9LPRS462

Description

ATI RD/RS600 series systems using AMD CPUs

Output Features

- Integrated Series Resistors on differential outputs
- Greyhound Compatible CPU outputs
- 2 0.7V Low Power differential CPU pairs
- 8 0.7V Low Power differential SRC pairs
- 4 0.7V Low Power differential ATIG pairs
- 1 66 MHz HyperTransport clock
- 2 48MHz USB clocks
- 3 14.318MHz Reference clocks

Pin Configuration

ATIG3C_LPR 31 34 ATIG2C_LPR *CLKREQB# 32 33 *CLKREQC#		9LPRS462 25 25 25 25 25 25 25 25 25 25 25 25 25	
---	--	--	--

64-TSSOP

Features/Benefits:

- 3 Programmable Clock Request pins for SRC and ATIG clocks
- ATIGCLKs are programmable for frequency
- Spread Spectrum for EMI reduction
- Outputs may be disabled via SMBus
- External crystal load capacitors for maximum frequency accuracy

Key Specifications

- CPU outputs cycle-to-cycle jitter <150ps
- SRC outputs cycle-to-cycle jitter < 125ps
- ATIG outputs cycle-to-cycle jitter < 125ps
- +/- 100ppm frequency accuracy on all outputs if REF is tuned to +/-100ppm

Funtionality

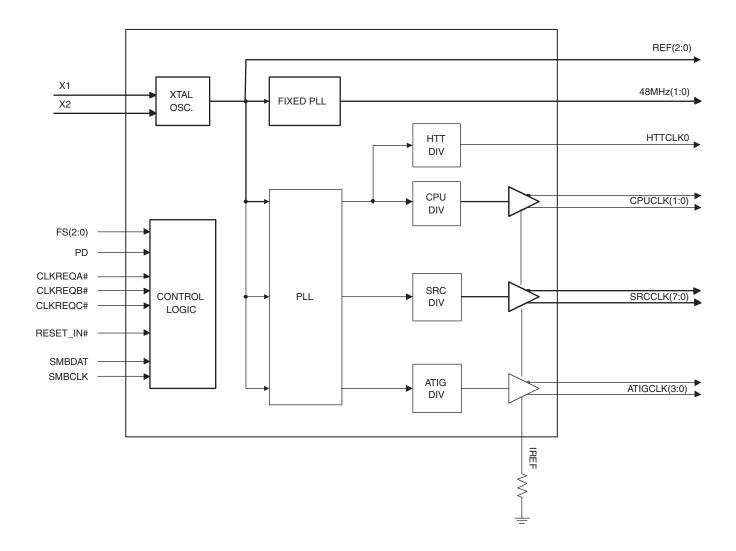
FS2	FS1	FS0	CPU	HTT	SRC	ATIG	USB
F32	732 731	F30	MHz	MHz	MHz	MHz	MHz
0	0	0	Hi-Z	Hi-Z	100.00	100.00	48.00
0	0	1	X/2	X/3	100.00	100.00	48.00
0	1	0	230.00	76.67	100.00	100.00	48.00
0	1	1	240.00	80.00	100.00	100.00	48.00
1	0	0	100.00	66.66	100.00	100.00	48.00
1	0	1	133.33	66.66	100.00	100.00	48.00
1	1	0	166.67	66.66	100.00	100.00	48.00
1	1	1	200.00	66.66	100.00	100.00	48.00

Power Groups

Pin No	ımber	Decembries
VDD	GND	Description
5	8	USB_48 outputs
14,23,26,36	15,22,27,37	SRCCLK outputs
33	32	ATIGCLK differential outputs
42	41	Analog, PLL
46	45	CPUCLK8 differential outputs
52	50	HTTCLK output
2	1	REF outputs

^{*} Internal Pull-Up Resistor
** Internal Pull-Down Resistor

Pin Description


PIN#	PIN NAME	TYPE	DESCRIPTION
1	GNDREF	GND	Ground pin for the REF outputs.
2	VDDREF	PWR	Ref, XTAL power supply, nominal 3.3V
3	X1	IN	Crystal input, nominally 14.318MHz
4	X2	OUT	Crystal output, nominally 14.318MHz
5	VDD48	PWR	Power pin for the 48MHz outputs and core. 3.3V
6	48MHz_0	OUT	48MHz clock output.
7	48MHz_1	OUT	48MHz clock output.
8	GND48	GND	Ground pin for the 48MHz outputs
9	SMBCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
10	SMBDAT	1/0	Data pin for SMBus circuitry, 5V tolerant.
10	SIVIBDAT	1/0	Real Time falling edge triggered input, When asserted, the part initiates a power up
11	RESET_IN#	IN	reset with the SMBus being reset to it's power up values, and all PLL derived clocks stopped for the duration of Power up Stabilization. REF outputs continue to run.
12	SRC7T_LPR	OUT	True clock of low power differential SRC clock pair with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
13	SRC7C_LPR	OUT	Complement clock of low power differential SRC clock pair with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
14	VDDSRC	PWR	Supply for SRC, 3.3V nominal
15	GNDSRC	GND	Ground pin for the SRC outputs
16	SRC6T_LPR	OUT	True clock of low power differential SRC clock pair with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
17	SRC6C_LPR	OUT	Complement clock of low power differential SRC clock pair with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
18	SRC5T_LPR	OUT	True clock of low power differential SRC clock pair with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
19	SRC5C_LPR	OUT	Complement clock of low power differential SRC clock pair with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
20	SRC4T_LPR	OUT	True clock of low power differential SRC clock pair with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
21	SRC4C_LPR	OUT	Complement clock of low power differential SRC clock pair with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
22	GNDSRC	GND	Ground pin for the SRC outputs
23	VDDSRC	PWR	Supply for SRC, 3.3V nominal
24	SRC3T_LPR	OUT	True clock of low power differential SRC clock pair with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
25	SRC3C_LPR	OUT	Complement clock of low power differential SRC clock pair with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
26	SRC2T_LPR	OUT	True clock of low power differential SRC clock pair with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
27	SRC2C_LPR	OUT	Complement clock of low power differential SRC clock pair with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
28	VDDSRC	PWR	Supply for SRC, 3.3V nominal
29	GNDSRC	GND	Ground pin for the SRC outputs
30	ATIG3T_LPR	OUT	True clock of low-power differential push-pull PCI-Express pair with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
31	ATIG3C_LPR	OUT	Complementary clock of low-power differential push-pull PCI-Express pair with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
32	*CLKREQB#	IN	Programmable Clock Request pin for SRC/ATIG/SB_SRC outputs. If output is selected for control, then that output is controlled as follows: 0 = Enabled, 1 = Tri-state

Pin Description (Continued)

PIN#	PIN NAME	TYPE	DESCRIPTION
1 114 #	TINNAME	111 -	Programmable Clock Request pin for SRC/ATIG/SB_SRC outputs. If output is selected
33	*CLKREQC#	IN	for control, then that output is controlled as follows:
			0 = Enabled, 1 = Tri-state
0.4	ATIONS LDD	OUT	Complementary clock of low-power differential push-pull PCI-Express pair with
34	ATIG2C_LPR	OUT	integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
25	ATICOT LDD	OUT	True clock of low-power differential push-pull PCI-Express pair with integrated 33 ohm
35	ATIG2T_LPR	001	series resistor. (no 50ohm shunt resistor to GND needed)
36	ATIG1C_LPR	OUT	Complementary clock of low-power differential push-pull PCI-Express pair with
- 00	Andro_Ern		integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
37	ATIG1T_LPR	OUT	True clock of low-power differential push-pull PCI-Express pair with integrated 33 ohm
			series resistor. (no 50ohm shunt resistor to GND needed)
38	GNDATIG	GND	Ground pin for the ATIG outputs
39	VDDATIG	PWR	Power supply for ATIG core, nominal 3.3V
40	ATIG0C_LPR	OUT	Complementary clock of low-power differential push-pull PCI-Express pair with
40	ATIGOO_ELTI		integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
41	ATIG0T_LPR	OUT	True clock of low-power differential push-pull PCI-Express pair with integrated 33 ohm
	711001_2.11		series resistor. (no 50ohm shunt resistor to GND needed)
42	SRC1C LPR	OUT	Complement clock of low power differential SRC clock pair with integrated 33 ohm
			series resistor. (no 50ohm shunt resistor to GND needed)
43	SRC1T_LPR	OUT	True clock of low power differential SRC clock pair with integrated 33 ohm series
			resistor. (no 50ohm shunt resistor to GND needed)
44	VDDSRC	PWR	Supply for SRC, 3.3V nominal
45	GNDSRC	GND	Ground pin for the SRC outputs
46	SRC0C_LPR	OUT	Complement clock of low power differential SRC clock pair with integrated 33 ohm
	511000_L1 11		series resistor. (no 50ohm shunt resistor to GND needed)
47	SRC0T_LPR	OUT	True clock of low power differential SRC clock pair with integrated 33 ohm series
			resistor. (no 50ohm shunt resistor to GND needed)
48	NC	NC	No Connect
49	GNDA	GND	Ground for the Analog Core
50	VDDA	PWR	3.3V Power for the Analog Core
51	CPUKG1C_LPR	OUT	Complementary signal of low-power differential push-pull AMD K8 "Greyhound" clock
			with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
52	CPUKG1T_LPR	OUT	True signal of low-power differential push-pull AMD K8 "Greyhound" clock with
	_		integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
53	GNDCPU	GND	Ground pin for the CPU outputs
54	VDDCPU	PWR	Supply for CPU, 3.3V nominal
55	CPUKG0C_LPR	OUT	Complementary signal of low-power differential push-pull AMD K8 "Greyhound" clock
			with integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
56	CPUKG0T_LPR	OUT	True signal of low-power differential push-pull AMD K8 "Greyhound" clock with
	_		integrated 33 ohm series resistor. (no 50ohm shunt resistor to GND needed)
	*OLKDEO A "	15.1	Programmable Clock Request pin for SRC/ATIG/SB_SRC outputs. If output is selected
57	*CLKREQA#	IN	for control, then that output is controlled as follows:
	ONDUITT	DIA/D	0 = Enabled, 1 = Tri-state
58	GNDHTT	PWR	Ground pin for the HTT outputs
59	HTTCLK0	OUT	3.3V single ended 66MHz hyper transport clock
60	VDDHTT	PWR	Supply for HTT clocks, nominal 3.3V.
61	**PD	IN	Enter /Exit Power Down.
			1 = Power Down, 0 = normal operation.
62	FS2/REF2	I/O	Frequency select latch input pin/ 3.3V 14.318MHz reference clock
63	FS1/REF1	I/O	Frequency select latch input pin/ 3.3V 14.318MHz reference clock
64	FS0/REF0	I/O	Frequency select latch input pin/ 3.3V 14.318MHz reference clock

General DescriptionThe ICS9LPRS462 is a main clock synthesizer chip that provides all clocks required for ATI RD/RS600-based systems. An SMBus interface allows full control of the device.

Funtional Block Diagram

Absolute Max

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
3.3V Core Supply Voltage	VDD_A	-			$V_{DD} + 0.5V$	V	1
3.3V Logic Input Supply Voltage	VDD_ln	-	GND - 0.5		V _{DD} + 0.5V	V	1
Storage Temperature	Ts	-	-65		150	°C	1
Ambient Operating Temp	Tambient	-	0		70	°C	1
Case Temperature	Tcase	-			115	°C	1
Input ESD protection HBM	ESD prot	-	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - Input/Supply/Common Output Parameters

PARAMETER	SYMBOL	CONDITIONS*	MIN	TYP	MAX	UNITS	Notes
Input High Voltage	V _{IH}	3.3 V +/-5%	2		V _{DD} + 0.3	V	1
Input Low Voltage	V _{IL}	3.3 V +/-5%	V _{SS} - 0.3		0.8	V	1
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	1
Input Low Current	I _{IL1}	V _{IN} = 0 V; Inputs with no pull-up resistors	-5			uA	1
input Low Current	I _{IL2}	V _{IN} = 0 V; Inputs with pull-up resistors	-200			uA	1
Low Threshold Input- High Voltage	V _{IH_FS}	3.3 V +/-5%	0.7		V _{DD} + 0.3	V	1
Low Threshold Input- Low Voltage	V_{IL_FS}	3.3 V +/-5%	V _{SS} - 0.3		0.35	V	1
Operating Current	rrent I _{DD3.3OP}	9LPRS462, all outputs driven			200	mA	1
Operating ourrent	'DD3.3OP	9LPRS464, all outputs driven			180	mA	1
Powerdown Current	I _{DD3.3PD}	all diff pairs low/low			21	mA	1
Input Frequency	F _i	V _{DD} = 3.3 V		14.31818		MHz	2
Pin Inductance	L _{pin}				7	nH	1
	C _{IN}	Logic Inputs			5	pF	1
Input Capacitance	C _{OUT}	Output pin capacitance			6	pF	1
	C _{INX}	X1 & X2 pins			5	pF	1
Clk Stabilization	T _{STAB}	From VDD Power-Up or de- assertion of PD to 1st clock			1.8	ms	1
Modulation Frequency		Triangular Modulation	30		33	kHz	1
Tdrive_PD		CPU output enable after PD de-assertion			300	us	1
Tfall_PD		PD fall time of			5	ns	1
Trise_PD		PD rise time of			5	ns	1
SMBus Voltage	$V_{_{ m DD}}$		2.7		5.5	V	1
Low-level Output Voltage	V _{OL}	@ I _{PULLUP}		_	0.4	V	1
Current sinking at $V_{OL} = 0.4 \text{ V}$	I _{PULLUP}		4			mA	1
SMBCLK/SMBDAT Clock/Data Rise Time	T _{RI2C}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SMBCLK/SMBDAT Clock/Data Fall Time	T _{FI2C}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%

¹Guaranteed by design and characterization, not 100% tested in production.

² Input frequency should be measured at the REF pin and tuned to ideal 14.31818MHz to meet ppm frequency accuracy on PLL outputs.

AC Electrical Characteristics - Low-Power DIF Outputs: CPUKG and HTT

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Crossing Point Variation	ΔV_{CROSS}	Single-ended Measurement			140	mV	1,2,5
Frequency	f	Spread Specturm On	198.8		200	MHz	1,3
Long Term Accuracy	ppm	Spread Specturm Off	-300		+300	ppm	1,11
Rising Edge Slew Rate	S _{RISE}	Differential Measurement	0.5		10	V/ns	1,4
Falling Edge Slew Rate	S _{FALL}	Differential Measurement	0.5		10	V/ns	1,4
Slew Rate Variation	t _{SLVAR}	Single-ended Measurement			20	%	1
CPU, DIF HTT Jitter - Cycle to Cycle	CPUJ _{C2C}	Differential Measurement			150	ps	1,6
Accumulated Jitter	t _{JACC}	See Notes			1	ns	1,7
Peak to Peak Differential Voltage	V _{D(PK-PK)}	Differential Measurement	400		2400	mV	1,8
Differential Voltage	V_D	Differential Measurement	200		1200	mV	1,9
Duty Cycle	D _{CYC}	Differential Measurement	45		55	%	1
Amplitude Variation	ΔV_D	Change in V _D DC cycle to cycle	-75		75	mV	1,10
CPU Skew	CPU _{SKEW10}	Differential Measurement			100	ps	1

Guaranteed by design and characterization, not 100% tested in production.

Single-ended measurement at crossing point. Value is maximum – minimum over all time. DC value of common mode is not important due to the blocking cap.

Minimum Frequency is a result of 0.5% down spread spectrum

Differential measurement through the range of ±100 mV, differential signal must remain monotonic and within slew rate spec when crossing through this region.

⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#.

⁶ Max difference of t_{CYCLE} between any two adjacent cycles.

⁷ Accumulated tjc.over a 10 μs time period, measured with JIT2 TIE at 50ps interval.

⁸ VD(PK-PK) is the overall magnitude of the differential signal.

⁹ VD(min) is the amplitude of the ring-back differential measurement, guaranteed by design, that ring-back will not cross 0V VD. VD(max) is the largest amplitude allowed.

¹⁰ The difference in magnitude of two adjacent VD_DC measurements. VD_DC is the stable post overshoot and ring-back part of the signal.

¹¹ All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

AC Electrical Characteristics - Low-Power DIF Outputs: SRC and ATIG

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Rising Edge Slew Rate	t _{SLR}	Differential Measurement	0.5		2	V/ns	1,2
Falling Edge Slew Rate	t _{FLR}	Differential Measurement	0.5		2	V/ns	1,2
Slew Rate Variation	t _{SLVAR}	Single-ended Measurement			20	%	1
Maximum Output Voltage	V_{HIGH}	Includes overshoot			1150	mV	1
Minimum Output Voltage	V_{LOW}	Includes undershoot	-300			mV	1
Differential Voltage Swing	V_{SWING}	Differential Measurement	300			mV	1
Crossing Point Voltage	V_{XABS}	Single-ended Measurement	300		550	mV	1,3,4
Crossing Point Variation	V _{XABSVAR}	Single-ended Measurement			140	mV	1,3,5
Duty Cycle	D _{CYC}	Differential Measurement	45		55	%	1
SRC, ATIG, Jitter - Cycle to Cycle	SRCJ _{C2C}	Differential Measurement			125	ps	1
SRC[5:0] Skew	SRC _{SKEW}	Differential Measurement			250	ps	1
SB_SRC[1:0] Skew	SRC _{SKEW}	Differential Measurement			100	ps	1
ATIG[3:0] Skew	SRC _{SKEW}	Differential Measurement			100	ps	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - USB - 48MHz

PARAMETER	SYMBOL	CONDITIONS*	MIN	TYP	MAX	UNITS	NOTES
Long Accuracy	ppm	see Tperiod min-max values	-100		100	ppm	1,2
Clock period	T _{period}	48.00MHz output nominal	20.8229		20.8344	ns	2
Clock Low Time	T_low	Measure from < 0.6V	9.3750		11.4580	ns	2
Clock High Time	T _{high}	Measure from > 2.0V	9.3750		11.4580	ns	2
Output High Voltage	V_{OH}	I _{OH} = -1 mA	2.4			V	1
Output Low Voltage	V_{OL}	I _{OL} = 1 mA			0.55	V	1
Output High Cument		V _{OH} @MIN = 1.0 V	-33			mA	1
Output High Current	I _{OH}	V _{OH} @MAX = 3.135 V			-33	mA	1
Output Law Current		V _{OL} @ MIN = 1.95 V	30			mA	1
Output Low Current	I _{OL}	V _{OL} @ MAX = 0.4 V			38	mA	1
Rise Time	t _{r_USB}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	0.5		1.5	ns	1
Fall Time	t _{f_USB}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	0.5		1.5	ns	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45		55	%	1
Group Skew	t _{skew}	V _T = 1.5 V			250	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	V _T = 1.5 V			130	ps	1,2

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, CL = 5 pF with Rs = 33Ω (unless otherwise specified)

² Slew rate measured through Vswing centered around differential zero

³ Vxabs is defined as the voltage where CLK = CLK#

⁴ Only applies to the differential rising edge (CLK rising and CLK# falling)

⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of

⁶ All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

¹Guaranteed by design and characterization, not 100% tested in production.

²ICS recommended and/or chipset vendor layout guidelines must be followed to meet this specification

Electrical Characteristics - REF-14.318MHz

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-100	0	100	ppm	1,2
Clock period	T_{period}	14.318MHz output nominal	69.8270	69.84	69.8550	ns	2
Clock Low Time	T_{low}	Measure from < 0.6V	30.9290		37.9130	ns	2
Clock High Time	T_{high}	Measure from > 2.0V	30.9290		37.9130	ns	2
Output High Voltage	V_{OH}	I _{OH} = -1 mA	2.4			V	1
Output Low Voltage	V_{OL}	I _{OL} = 1 mA			0.4	V	1
Output High Current	I _{OH}	V _{OH} @MIN = 1.0 V, V _{OH} @MAX = 3.135 V	-29		-23	mA	1
Output Low Current	I _{OL}	$V_{OL} @MIN = 1.95 V,$ $V_{OL} @MAX = 0.4 V$	29		27	mA	1
Rise Time	t _{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	1		1.5	ns	1
Fall Time	t _{f1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	1		1.5	ns	1
Skew	t _{sk1}	$V_T = 1.5 V$			100	ps	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45		55	%	1
Jitter	t _{jcyc-cyc}	V _T = 1.5 V			300	ps	1

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, CL = 5 pF with Rs = 33Ω (unless otherwise specified)

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

Table1: CPU and HTT Frequency Selection Table

Table 1.		yte 0		<u>cqueri</u>	cy Selecti	on rabic		
Bit4	Bit3	Bit2	Bit1	Bit0	CPUCLK	UTT	Cowood	Overeleele
CPU SS_EN	CPU FS3	CPU FS2	CPU FS1	CPU FS0	(2:0) (MHz)	HTT (MHz)	Spread %	Overclock %
0	0	0	0	0	Hi-Z	Hi-Z	None	
0	0	0	0	1	X / 2	X / 3	None	
0	0	0	1	0	230.00	76.67	None	15%
0	0	0	1	1	240.00	80.00	None	20%
0	0	1	0	0	100.00	66.67	None	
0	0	1	0	1	133.33	66.67	None	0%
0	0	1	1	0	166.67	66.67	None	0 /8
0	0	1	1	1	200.00	66.67	None	
0	1	0	0	0	250.00	83.33	None	25%
0	1	0	0	1	260.00	86.67	None	30%
0	1	0	1	0	270.00	90.00	None	35%
0	1	0	1	1	280.00	93.33	None	40%
0	1	1	0	0	102.00	68.00	None	
0	1	1	0	1	136.00	68.00	None	2%
0	1	1	1	0	170.00	68.00	None	2%
0	1	1	1	1	204.00	68.00	None	
1	0	0	0	0	210.00	70.00	-0.5%	5%
1	0	0	0	1	220.00	73.33	-0.5%	10%
1	0	0	1	0	230.00	76.67	-0.5%	15%
1	0	0	1	1	240.00	80.00	-0.5%	20%
1	0	1	0	0	100.00	66.67	-0.5%	
1	0	1	0	1	133.33	66.67	-0.5%	0%
1	0	1	1	0	166.67	66.67	-0.5%	U%
1	0	1	1	1	200.00	66.67	-0.5%	
1	1	0	0	0	250.00	83.33	-0.5%	25%
1	1	0	0	1	260.00	86.67	-0.5%	30%
1	1	0	1	0	270.00	90.00	-0.5%	35%
1	1	0	1	1	280.00	93.33	-0.5%	40%
1	1	1	0	0	102.00	68.00	-0.5%	
1	1	1	0	1	136.00	68.00	-0.5%	20/
1	1	1	1	0	170.00	68.00	-0.5%	2%
1	1	1	1	1	204.00	68.00	-0.5%	

Table2: SRC Frequency Selection Table

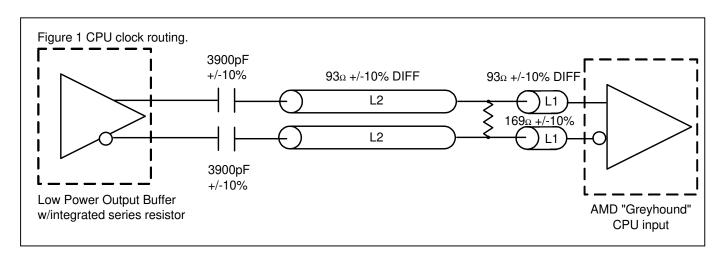
Byte 0		Byt		00.00	uon rabie		200
Bit 5	Bit3	Bit2	Bit1	Bit0	SRC(7:0)	Spread	SRC
SRC	SRC	SRC	SRC	SRC	(MHz)	. %	OverClock
SS_EN	FS3	FS2	FS1	FS0	, ,		%
0	0	0	0	0	100.00	0	0%
0	0	0	0	1	101.00	0	1%
0	0	0	1	0	102.00	0	2%
0	0	0	1	1	103.00	0	3%
0	0	1	0	0	104.00	0	4%
0	0	1	0	1	105.00	0	5%
0	0	1	1	0	106.00	0	6%
0	0	1	1	1	107.00	0	7%
0	1	0	0	0	100.00	0	0%
0	1	0	0	1	101.00	0	1%
0	1	0	1	0	102.00	0	2%
0	1	0	1	1	103.00	0	3%
0	1	1	0	0	104.00	0	4%
0	1	1	0	1	105.00	0	5%
0	1	1	1	0	106.00	0	6%
0	1	1	1	1	107.00	0	7%
1	0	0	0	0	100.00	-0.25%	0%
1	0	0	0	1	101.00	-0.25%	1%
1	0	0	1	0	102.00	-0.25%	2%
1	0	0	1	1	103.00	-0.25%	3%
1	0	1	0	0	104.00	-0.25%	4%
1	0	1	0	1	105.00	-0.25%	5%
1	0	1	1	0	106.00	-0.25%	6%
1	0	1	1	1	107.00	-0.25%	7%
1	1	0	0	0	100.00	-0.5%	0%
1	1	0	0	1	101.00	-0.5%	1%
1	1	0	1	0	102.00	-0.5%	2%
1	1	0	1	1	103.00	-0.5%	3%
1	1	1	0	0	104.00	-0.5%	4%
1	1	1	0	1	105.00	-0.5%	5%
1	1	1	1	0	106.00	-0.5%	6%
1	1	1	1	1	107.00	-0.5%	7%

Table3: ATIG Frequency Selection Table

Table3: ATIG Frequency Selection Table							
Byte 0			te 9	I			
Bit 6	Bit4	Bit3	Bit1	Bit0	ATIG(2:0)	Spread	ATIG
ATIG	ATIG	ATIG	ATIG	ATIG	(MHz)	. %	OverClock %
SS_EN	FS3	FS2	FS1	FS0			7 0
0	0	0	0	0	100.00	0	0%
0	0	0	0	1	105.00	0	5%
0	0	0	1	0	110.00	0	10%
0	0	0	1	1	115.00	0	15%
0	0	1	0	0	120.00	0	20%
0	0	1	0	1	125.00	0	25%
0	0	1	1	0	130.00	0	30%
0	0	1	1	1	135.00	0	35%
0	1	0	0	0	100.00	0	0%
0	1	0	0	1	105.00	0	5%
0	1	0	1	0	110.00	0	10%
0	1	0	1	1	115.00	0	15%
0	1	1	0	0	120.00	0	20%
0	1	1	0	1	125.00	0	25%
0	1	1	1	0	130.00	0	30%
0	1	1	1	1	135.00	0	35%
1	0	0	0	0	100.00	-0.25%	0%
1	0	0	0	1	105.00	-0.25%	5%
1	0	0	1	0	110.00	-0.25%	10%
1	0	0	1	1	115.00	-0.25%	15%
1	0	1	0	0	120.00	-0.25%	20%
1	0	1	0	1	125.00	-0.25%	25%
1	0	1	1	0	130.00	-0.25%	30%
1	0	1	1	1	135.00	-0.25%	35%
1	1	0	0	0	100.00	-0.5%	0%
1	1	0	0	1	105.00	-0.5%	5%
1	1	0	1	0	110.00	-0.5%	10%
1	1	0	1	1	115.00	-0.5%	15%
1	1	1	0	0	120.00	-0.5%	20%
1	1	1	0	1	125.00	-0.5%	25%
1	1	1	1	0	130.00	-0.5%	30%
1	1	1	1	1	135.00	-0.5%	35%

Table 4: CPU Divider Ratios

B19b(7:4)		Divider (3:2)							
	Bit	00		01		10		11	MSB
(1:0)	00	0000	2	0100	4	1000	8	1100	16
) <u>.</u>	01	0001	3	0101	6	1001	12	1101	24
ide	10	0010	5	0110	10	1010	20	1110	40
Divider	11	0011	15	0111	30	1011	60	1111	120
	LSB	Address	Div	Address		Address	Div	Address	Div

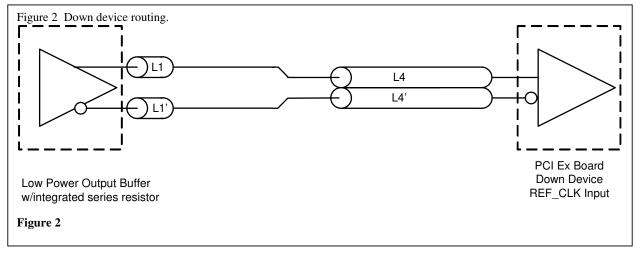

Table 5: HTT Divider Ratios

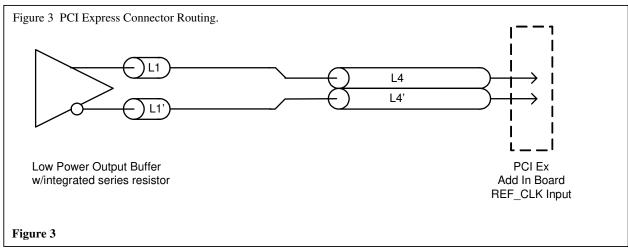
B20b(3:0)		Divider (3:2)							
	Bit	00		01		10		11	MSB
(1:0)	00	0000	4	0100	8	1000	16	1100	32
ir (1	01	0001	3	0101	6	1001	12	1101	24
Divider	10	0010	5	0110	10	1010	20	1110	40
ΡiΟ	11	0011	15	0111	30	1011	60	1111	120
	LSB	Address	Div	Address		Address	Div	Address	Div

Table 6: ATIG Divider Ratios

B19b(3:0)		Divider (3:2)							
	Bit	00		01		10		11	MSB
(1:0)	00	0000	2	0100	4	1000	8	1100	16
) i	01	0001	3	0101	6	1001	12	1101	24
ide	10	0010	5	0110	10	1010	20	1110	40
Divider	11	0011	7	0111	14	1011	28	1111	56
	LSB	Address	Div	Address		Address	Div	Address	Div

CPU Clock			
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure
L1 length, Route as coupled 93 ohm trace.	0.5 max	inch	1
L2 length, Route as coupled 93 ohm trace.	Contact AMD	inch	1




IDT™/ICS™ Low Power Clock for ATI RS/RD600 series chipsets for AMD CPUs

SRC Reference Clock							
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure				
L1 length, Route as non-coupled 50 ohm trace.	0.5 max	inch	2				
L2 length, Route as non-coupled 50 ohm trace.	N/A	inch	2				
L3 length, Route as non-coupled 50 ohm trace.	N/A	inch	2				
Rs	33	ohm	2				
Rt	49.9	ohm	2				

Down Device Differential Routing	Dimension or Value	Unit	Figure
L4 length, Route as coupled microstrip 100 ohm differential trace.	2 min to 16 max	inch	2
L4 length, Route as coupled stripline 100 ohm differential trace.	1.8 min to 14.4 max	inch	2

Differential Routing to PCI Express Connector	Dimension or Value	Unit	Figure
L4 length, Route as coupled microstrip 100 ohm differential trace.	0.25 to 14 max	inch	3
L4 length, Route as coupled stripline 100 ohm differential trace.	0.225 min to 12.6 max	inch	3

General SMBus serial interface information for the ICS9LPRS462

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- · Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

In	dex Block W	/rit	e Operation
Coi	ntroller (Host)		ICS (Slave/Receiver)
Т	starT bit		
Slav	e Address D2 _(H)		
WR	WRite		
			ACK
Beg	inning Byte = N		
			ACK
Data	Byte Count = X		
			ACK
Begir	nning Byte N		
			ACK
	0	g.	
	0	X Byte	0
	0	\times	0
			0
Byte	e N + X - 1		
	•		ACK
Р	stoP bit		

In	dex Block Rea				
Cor	troller (Host)	IC	S (Slave/Receiver)		
Т	starT bit				
Slave	e Address D2 _(H)				
WR	WRite				
		ACK			
Begi	nning Byte = N				
	-		ACK		
RT	Repeat starT				
Slave	e Address D3 _(H)				
RD	ReaD				
	-	ACK			
		Data Byte Count = X			
	ACK				
			Beginning Byte N		
	ACK				
		X Byte	0		
	0	B)	0		
	0	×	0		
. 0					
			Byte N + X - 1		
N	Not acknowledge				
Р	stoP bit				

SMBus Table: Spread Spectrum Enable and CPU Frequency Select Register

Byte 0	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	-	FS Source	Latched Input or SMBus Frequency Select	RW	Latched Inputs	SMBus	0
Bit 6	-	ATIG SS_EN	ATIG Spread Spectrum Enable	RW	Disable	Disable Enable	
Bit 5	-	SRC SS_EN	SRC Spread Spectrum Enable RW Disable Ena		Enable	0	
Bit 4	-	CPU SS_EN	CPU Spread Spectrum Enable	RW	Disable	Enable	0
Bit 3	-	CPU FS3	CPU Freq Select Bit 3	RW	Coo T	able 1:	0
Bit 2	-	CPU FS2	CPU Freq Select Bit 2	RW			Latch
Bit 1	-	CPU FS1	CPU Freq Select Bit 1	RW	1	CPU Frequency Selection Table	
Bit 0	-	CPU FS0	CPU Freq Select Bit 0	RW		.oic	Latch

Note: Each Spread Spectrum Enable bit is independent from the other.

Bit(6:4) must all set to "1" in order to enable spread for CPU, SRC and ATIG clocks.

SMBus Table: Output Control Register

Byte 1	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	7	48MHz_1	48MHz_1 Output Enable	RW	Disable	Enable	1
Bit 6	6	48MHz_0	48MHz_0 Output Enable	RW	Disable	Enable	1
Bit 5	54	REF2	REF2 Output Enable	RW	Disable	Enable	1
Bit 4	55	REF1	REF1 Output Enable	RW	Disable	Enable	1
Bit 3	56	REF0	REF0 Output Enable	RW	Disable	Enable	1
Bit 2	51	HTTCLK0	HTTCLK0 Output Enable	RW	Disable	Enable	1
Bit 1	44,43	CPUCLK1	CPUCLK1 Output Enable	RW	Disable	Enable	1
Bit 0	48,47	CPUCLK0	CPUCLK0 Output Enable	RW	Disable	Enable	1

SMBus Table: ATIGCLK and CLKREQB# Output Control Register

SWIDUS TABLE. AT IGCER and CERNEGO# Output Control negister							
Byte 2	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7			Reserved				0
Bit 6			Reserved				0
Bit 5	31,30	ATIGCLK1	ATIGCLK1 Output Enable	RW	Disable	Enable	1
Bit 4	35,34	ATIGCLK0	ATIGCLK0 Output Enable	RW	Disable	Enable	1
Bit 3	20,21	REQBSRC2	CLKREQB# Controls SRC2	RW	Does not control	Controls	0
Bit 2			Reserved				0
Bit 1	24,25	REQBSRC1	CLKREQB# Controls SRC1	RW	Does not control	Controls	0
Bit 0			Reserved				0

SMBus Table: SRCCLK Output Control Register

ONIDGO I	abic. Oil	OOLK Output Control ricg	10101				
Byte 3	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	12,13	SRCCLK5		RW	Disable	Enable	1
Bit 6	16,17	SRCCLK4		RW	Disable	Enable	1
Bit 5	18,19	SRCCLK3	Master Output control. Enables or disables output, regardless of	RW	Disable	Enable	1
Bit 4	20,21	SRCCLK2		RW	Disable	Enable	1
Bit 3		Reserved	CLKREQ# inputs.	-	-	-	1
Bit 2	24,25	SRCCLK1	OLIVITEQ# IIIpuis.	RW	Disable	Enable	1
Bit 1		Reserved		-	-	-	1
Bit 0	39,38	SRCCLK0		RW	Disable	Enable	1

SWIDUS TADIC. CEINTEGOR AND CEINTEGOR CUIDUI CONTION NEGISIE	SMBus Table: CLKREQB:	# and CLKREQC# O	utput Control Register
--	-----------------------	------------------	------------------------

Byte 4	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	12,13	REQASRC5	CLKREQA# Controls SRC5	RW	Does not control	Controls	0
Bit 6	16,17	REQASRC4	CLKREQA# Controls SRC4	RW	Does not control	Controls	0
Bit 5	18,19	REQASRC3	CLKREQA# Controls SRC3	RW	Does not control	Controls	0
Bit 4	Reserved						
Bit 3			Reserved				0
Bit 2	31,30	REQCATIG1	CLKREQC# Controls ATIG1	RW	Does not control	Controls	0
Bit 1	35,34	REQCATIG0	CLKREQC# Controls ATIG0	RW	Does not control	Controls	0
Bit 0	39,38	REQCSRC0	CLKREQC# Controls SRC0	RW	Does not control	Controls	0

SMBus Table: CPU Stop Control and SRC Frequency Select Register

SMBds Table: CF0 Stop Control and Shc Frequency Select negister										
Byte 5	Pin #	Name	Control Function	Type	0	1	PWD			
Bit 7		IO_VOUT2	IO Output Voltage Select (Most Significant Bit)	RW	See Table 8: V IO Selection		1			
Bit 6		IO_VOUT1	IO Output Voltage Select	RW		(Default is 0.8V)				
Bit 5		IO_VOUT0	IO Output Voltage Select (Least Significant Bit)	RW	(Delault is 0.6V)		1			
Bit 4			Reserved				0			
Bit 3	-	SRC FS3	SRC Freq Select Bit 3	RW	Coo T	-bl- O	0			
Bit 2	-	SRC FS2	SRC Freq Select Bit 2	RW	SRC Fregue	able 2: acv Selection	0			
Bit 1	-	SRC FS1	SRC Freq Select Bit 1	RW		ble	0			
Bit 0	-	SRC FS0	SRC Freq Select Bit 0	RW			0			

SMBus Table: Device ID Register

Byte 6	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	-	Device ID7 (MSB)		R	-	-	0
Bit 6	-	Device ID6		R	-	-	1
Bit 5	-	Device ID5	DEVICE ID -	R	-	-	1
Bit 4	-	Device ID4		R	-	-	0
Bit 3	-	Device ID3		R	-	-	0
Bit 2	-	Device ID2		R	-	-	1
Bit 1	-	Device ID1		R	-	-	0
Bit 0	-	Device ID0 (LSB)		R	-	-	0

SMBus Table: Revision and Vendor ID Register

Byte 7	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	-	RID3		R	-	-	0
Bit 6	-	RID2	REVISION ID	R	-	-	0
Bit 5	-	RID1	HEVIOION ID	R	-	-	0
Bit 4	-	RID0		R	-	-	0
Bit 3	-	VID3		R	-	-	0
Bit 2	-	VID2	VENDOR ID	R	-	-	0
Bit 1	-	VID1	VENDOR ID	R	-	-	0
Bit 0	-	VID0		R	-	-	1

SMBus Table: B	yte Count Register
----------------	--------------------

Byte 8	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	BC7		RW			0
Bit 6	-	BC6		RW			0
Bit 5	-	BC5		RW	Writing to this	s register will	0
Bit 4	-	BC4	Byte Count Programming b(7:0)	RW	congiure how r	congiure how many bytes will	0
Bit 3	-	BC3	byte Count Frogramming b(7.0)	RW	be read back	k, default is 9	1
Bit 2	-	BC2		RW	byt	es.	0
Bit 1	-	BC1		RW			0
Bit 0	-	BC0		RW			1

SMBus Table: REF2, 48MHz Output Strength Control and ATIG Frequency Select Register

ompao rabio rie e, romi e output ottorigin obitito ana viria i roduoroy obioti rogiotor										
Byte 9	Pin #	Name	Control Function	Туре	0	1	PWD			
Bit 7	54	REF2Str	REF2 Strength Control	RW	1X	2X	1			
Bit 6	7	48MHz_1Str	48MHz_1 Strength Control	RW	1X	2X	1			
Bit 5	6	48MHz_0Str	48MHz_0 Strength Control	RW	1X	2X	1			
Bit 4	Reserved									
Bit 3	-	ATIG FS3	ATIG Freq Select Bit 3	RW			0			
Bit 2	-	ATIG FS2	ATIG Freq Select Bit 2	RW	See Tabl	e 3: ATIG	0			
Bit 1	-	ATIG FS1	ATIG Freq Select Bit 1	RW	Frequency Selection Table		0			
Bit 0	-	ATIG FS0	ATIG Freq Select Bit 0	RW			0			

SMBus Table: PLLs M/N Programming Enable and REF1, REF0 Output Strength Control Register

Byte 10	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	M/N_EN	PLLs M/N Programming Enable	RW	Disable	Enable	0
Bit 6	55	REF1Str	REF1 Strength Control	RW	1X	2X	1
Bit 5	56	REF0Str	REF0 Strength Control	RW	1X	2X	1
Bit 4	Reserved						0
Bit 3			Reserved				0
Bit 2			Reserved				0
Bit 1	Reserved					0	
Bit 0			Reserved				0

SMBus Table: CPU PLL VCO Frequency Control Register

	Simple Table! Of C 1 12 1 00 1 toquettey Control toglete!									
Byte 11	Pin #	Name	Control Function	Туре	0	1	PWD			
Bit 7	-	N Div8	N Divider Prog bit 8	RW	The decimal re	presentation of	Х			
Bit 6	-	N Div 9	N Divider Prog bit 9	RW	M and N Divier in Byte 11 and					
Bit 5	-	M Div5		RW	12 will config	ure the VCO	Х			
Bit 4	-	M Div4		RW		efault at power	Х			
Bit 3	-	M Div3	M Divider Programming bits	RW	up = latch-in d	or Byte 0 Rom	Х			
Bit 2	-	M Div2	Wi Divider Frogramming bits	RW	table. VCO I	' '	Х			
Bit 1	-	M Div1		RW	_	Div(9:0)+8]/	Х			
Bit 0	-	M Div0		RW	[MDiv(5:0)+2]	Χ			

SMBus Table: CPU PLL VCO Frequency Control Register

Byte 12	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	-	N Div7		RW	The decimal re	presentation of	Х
Bit 6	-	N Div6			M and N Divier	•	
Bit 5	-	N Div5		RW	12 will config	ure the VCO	Х
Bit 4	-	N Div4	N Divider Programming b(7:0)	RW	frequency. D	efault at power	Х
Bit 3	-	N Div3	N Divider Frogramming b(7.0)	RW	up = latch-in d	or Byte 0 Rom	Х
Bit 2	-	N Div2		RW	table. VCO I	' '	Х
Bit 1	-	N Div1		RW	14.318 x [N	· , -	Х
Bit 0	-	N Div0		RW	[MDiv(5:0)+2]	Х

IDT™/ICS™ Low Power Clock for ATI RS/RD600 series chipsets for AMD CPUs

Byte 13	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	-	SSP7		RW			Х
Bit 6	-	SSP6		RW	These Spread	Spectrum bits	Х
Bit 5	-	SSP5		RW	in Byte 13 and	14 will program	Х
Bit 4	-	SSP4	Spread Spectrum Programming	RW	the spread pe	centage. It is	Х
Bit 3	-	SSP3	b(7:0)	RW	recommende	ed to use ICS	Х
Bit 2	-	SSP2		RW	Spread % tal	'	Х
Bit 1	-	SSP1		RW	progra	mming.	Х
Bit 0	-	SSP0		RW			Х

SMBus Table: CPU PLL Spread Spectrum Control Register

Byte 14	Pin #	Name	Control Function	Type	0	1	PWD		
Bit 7		Reserved							
Bit 6	-	SSP14		RW		Х			
Bit 5	-	SSP13		RW	These Spread	Х			
Bit 4	-	SSP12	Carrand Canaday van Dunas van annin a	RW	in Byte 13 and	. •	Х		
Bit 3	-	SSP11	Spread Spectrum Programming b(14:8)	RW	the spread per recommender	Х			
Bit 2	-	SSP10	D(14.8)	RW	Spread % tal	Х			
Bit 1	-	SSP9		RW	progra	Х			
Bit 0	-	SSP8		RW	progra	g.	Χ		

SMBus Table: ATIG PLL VCO Frequency Control Register

Byte 15	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	N Div8	N Divider Prog bit 8	RW	-	Х	
Bit 6	-	N Div9	N Divider Prog bit 9	RW	The decimal representation of		
Bit 5	-	M Div5		RW	M and N Divier in Byte 17 and - 18 will configure the VCO		Х
Bit 4	-	M Div4	Ι	RW	_	Х	
Bit 3	-	M Div3	M Divider Programming bits	RW	frequency. Default at power up = Byte 0 Rom table. VCO Frequency = 14.318 x	Х	
Bit 2	-	M Div2	w Divider Frogramming bits	RW		Х	
Bit 1	-	M Div1		RW	[NDiv(9:0)+8] / [MDiv(5:0)+2]		Х
Bit 0	-	M Div0		RW		Χ	

SMBus Table: ATIG PLL VCO Frequency Control Register

Byte 16	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	N Div7		RW			Х
Bit 6	-	N Div6	N Divider Programming b(7:0)	RW	The decimal re		
Bit 5	-	N Div5		RW	M and N Divier in Byte 17 and 18 will configure the VCO	Х	
Bit 4	-	N Div4		RW		Х	
Bit 3	-	N Div3	N Divider Frogramming b(7.0)	RW	frequency. Default at power up = Byte 0 Rom table. VCO	Х	
Bit 2	-	N Div2		RW	Frequency		Х
Bit 1	-	N Div1		RW	[NDiv(9:0)+8] / [MDiv(5:0)+2]		Х
Bit 0	-	N Div0		RW	[[(5.5)]	Х

SMBus Table: ATIG PLL Spread Spectrum Control Register

Byte 17	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	-	SSP7		RW			Χ
Bit 6	-	SSP6		RW	These Spread	Spectrum bits	Χ
Bit 5	-	SSP5		RW	in Byte 19 and	20 will program	Χ
Bit 4	-	SSP4	Spread Spectrum Programming	RW	the spread pe	centage. It is	Χ
Bit 3	-	SSP3	b(7:0)	RW		ed to use ICS	Χ
Bit 2	-	SSP2		RW	Spread % tal	ole for spread	Χ
Bit 1	-	SSP1		RW	progra	mming.	Χ
Bit 0		SSP0		RW			Χ

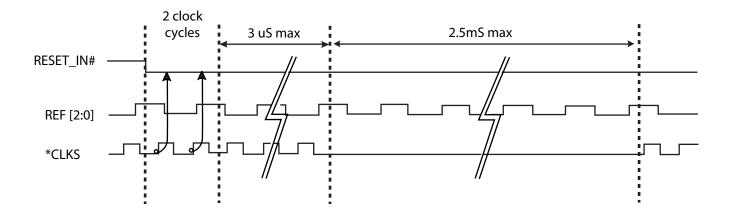
 $\textbf{IDT}^{\text{TM}}/\textbf{ICS}^{\text{TM}} \ \text{Low Power Clock for ATI RS/RD600 series chipsets for AMD CPUs}$

SMBus Table: ATIG PLL Spread Spectrum Control Register

Byte 18	Pin #	Name	Control Function	Type	0	1	PWD			
Bit 7		Reserved								
Bit 6	-	SSP14		RW		Х				
Bit 5	-	SSP13		RW	These Spread	Х				
Bit 4	-	SSP12	Carood Canatrum Dragramming	RW	in Byte 19 and	Х				
Bit 3	-	SSP11	Spread Spectrum Programming b(14:8)	RW	the spread per recommender	Х				
Bit 2	-	SSP10	b(14.6)	RW	Spread % tal	Х				
Bit 1	-	SSP9		RW	progra	Х				
Bit 0	-	SSP8		RW	progra	Х				

SMBus Table: CPU and ATIG Divider Ratio Programming Bits Select Register

Byte 19	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	CPU_Div3		RW			Х
Bit 6	-	CPU_Div2	CPU_Divider Ratio	RW	See T	able 4:	Х
Bit 5	-	CPU_Div1	Programming Bits	RW	CPU Divid	der Ratios	Х
Bit 4	-	CPU_Div0		RW			Х
Bit 3	-	ATIG_Div3		RW			Х
Bit 2	-	ATIG_Div2	ATIG_Divider Ratio	RW	See T	able 5:	Х
Bit 1	-	ATIG_Div1	Programming Bits	RW	ATIG Divi	der Ratios	Х
Bit 0	-	ATIG_Div0		RW			Х


SMBus Table: HTT Divider Ratio Programming Bits Select Register

Byte 20	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7			Reserved				0
Bit 6	Reserved						0
Bit 5	Reserved						0
Bit 4			Reserved				0
Bit 3		HTT_Div3		RW			Х
Bit 2	-	HTT_Div2	HTT_Divider Ratio	RW	See T	able 6:	Χ
Bit 1	-	HTT_Div1	Programming Bits	RW	HTT Divid	der Ratios	Χ
Bit 0	-	HTT_Div0		RW			Χ

RESET_IN# - Assertion (transition from '1' to '0')

Asserting RESET_IN pin stops all the outputs including CPU, SRC, ATIG, PCI and USB with the REF[2:0] running. The pin is a Schmitt trigger input with debouncing. After it is triggered, REF clocks will wait for two clock cycle to ensure the RESET_IN is asserted. Then, it will take 3uS for the clocks to stop without glitches. The clock chip will be power down and re-power up, and SMBus will be reloaded. It will take no more than 2.5mS for the clocks to come out with correct frequencies and no glitches.

** Deassertion of RESET_IN# (transition from '0' to '1') has NO effect on the clocks.

Shared Pin Operation - Input/Output Pins

The I/O pins designated by (input/output) on the ICS9LPRS462 serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 5-bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads.

To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm (10K) resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period.

Figure 1 shows a means of implementing this function when a switch or 2 pin header is used. With no jumper is installed the pin will be pulled high. With the jumper in place the pin will be pulled

low. If programmability is not necessary, than only a single resistor is necessary. The programming resistors should be located close to the series termination resistor to minimize the current loop area. It is more important to locate the series termination resistor close to the driver than the programming resistor.

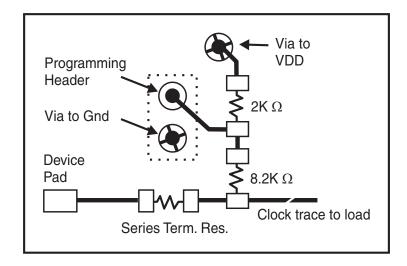
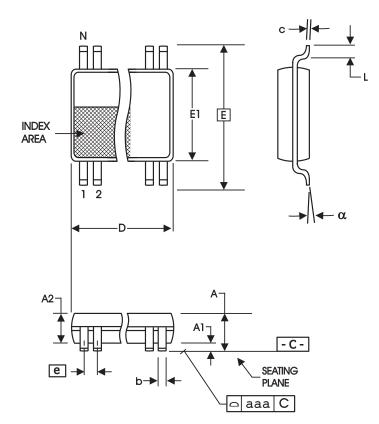



Fig. 1

6.10 mm. Body, 0.50 mm. Pitch TSSOP

	(240 mil)	(20 mil)			
	In Milli	meters	In In	ches	
SYMBOL	COMMON DIMENSIONS		COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α		1.20	-	.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.17	0.27	.007	.011	
С	0.09	0.20	.0035	.008	
D	SEE VAF	RIATIONS	SEE VAF	RIATIONS	
E	8.10 E	BASIC	0.319	BASIC	
E1	6.00	6.20	.236	.244	
е	0.50 E	BASIC	0.020	BASIC	
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VARIATIONS		
α	0°	8°	0°	8°	
aaa	-	0.10	-	.004	

VARIATIONS

	N	D mm.		D (inch)	
		MIN	MAX	MIN	MAX
	64	16.90	17.10	.665	.673

Reference Doc.: JEDEC Publication 95, MO-153

10-0039

Ordering Information

ICS 9LPRS462yGLFT

Example:

Revision History

Rev.	Issue Date	Description	Page #
		1. Updated IDD current.	
		2. Added Down device routing Diagram and PCI Express Connector Routing Diagram.	
		3. Going to Release.	5,7-8,13
		4. Updated Rs on REF & USB to 33ohm.	
Α	4/7/2008	5. Corrected REF ppm to +/- 100ppm.	

This product is protected by United States Patent NO. 7,342,420 and other patents.

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

408-284-6578 pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA