

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

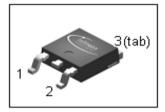
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3^{rd} Generation thinQ!TM SiC Schottky Diode


Features

- Revolutionary semiconductor material Silicon Carbide
- Switching behavior benchmark
- No reverse recovery / No forward recovery
- Temperature independent switching behavior
- High surge current capability
- Pb-free lead plating; RoHS compliant
- Qualified according to JEDEC¹⁾ for target applications
- Breakdown voltage tested at 20mA²⁾
- · Optimized for high temperature operation
- Lowest Figure of Merit Q_C/I_F

Product Summary

$V_{ m DC}$	600	>
Q_C	4.5	nC
<i>I</i> _F ; <i>T</i> _C < 130 °C	4	Α

PG-T0252-3

thinQ! 3G Diode designed for fast switching applications like:

• SMPS e.g.; CCM PFC

• Motor Drives; Solar Applications; UPS

Туре	Package	Marking	Pin 1	Pin 2	Pin 3
IDD04SG60C	PG-TO252-3	D04G60C	n.c.	А	С

Maximum ratings

Parameter	Symbol	Conditions	Value	Unit
Continuous forward current	I _F	T _C <130 °C	4	Α
Surge non-repetitive forward current,	I _{F,SM}	$T_{\rm C}$ =25 °C, $t_{\rm p}$ =10 ms	18	
sine halfwave		$T_{\rm C}$ =150 °C, $t_{\rm p}$ =10 ms	13.5	
Non-repetitive peak forward current	I _{F,max}	T _C =25 °C, t _p =10 μs	120	
i2t value	∫ <i>i</i> ²d <i>t</i>	$T_{\rm C}$ =25 °C, $t_{\rm p}$ =10 ms	1.8	A ² s
i²t value		$T_{\rm C}$ =150 °C, $t_{\rm p}$ =10 ms	0.93	
Repetitive peak reverse voltage	V_{RRM}	<i>T</i> _j =25 °C	600	V
Diode dv/dt ruggedness	d <i>v</i> ∕d <i>t</i>	V _R = 0480 V	50	V/ns
Power dissipation	P_{tot}	T _C =25 °C	43	W
Operating and storage temperature	$T_{\rm j},T_{\rm stg}$		-55 175	°C
Soldering temperature, reflow soldering (max)	T_{sold}	reflow MSL1	260	

Parameter	Symbol	Conditions	Values		Unit	
			min.	typ.	max.	

Thermal characteristics

Thermal resistance, junction - case	$R_{ m thJC}$		1	1	3.5	K/W
Thermal resistance, junction -	$R_{ m thJA}$	SMD version, device on PCB, minimal footprint	-	1	75	
ambient		SMD version, device on PCB, 6 cm ² cooling area ⁵⁾	1	50	1	

Electrical characteristics, at T_i =25 °C, unless otherwise specified

Static characteristics

DC blocking voltage	$V_{ m DC}$	I_{R} =0.05 mA, T_{j} =25 °C	600	-	-	٧
Diode forward voltage	V_{F}	<i>I</i> _F =4 A, <i>T</i> _j =25 °C	-	2.1	2.3	
		I _F =4 A, T _j =150 °C	-	2.8	-	
Reverse current	I _R	V _R =600 V, T _j =25 °C	-	0.3	25	μΑ
		V _R =600 V, T _j =150 °C	-	1.3	270	

AC characteristics

Total capacitive charge	Q_{c}	$V_{\rm R}$ =400 V, $I_{\rm F}$ ≤ $I_{\rm F,max}$, -d $I_{\rm F}$ /d $I_{\rm E}$ =200 A/ $I_{\rm F}$ s, - $I_{\rm J}$ =150 °C	-	4.5	-	nC
Switching time ³⁾	t_c		1	1	<10	ns
Total capacitance	С	V _R =1 V, <i>f</i> =1 MHz	-	80	-	pF
		V _R =300 V, f=1 MHz	-	10	-	
		V _R =600 V, f=1 MHz	-	10	-	

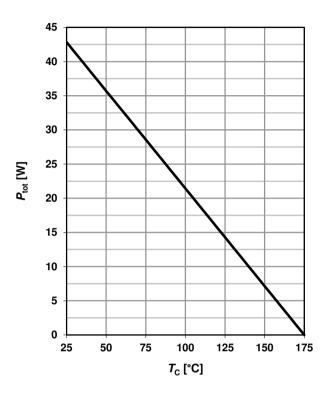
¹⁾ J-STD20 and JESD22

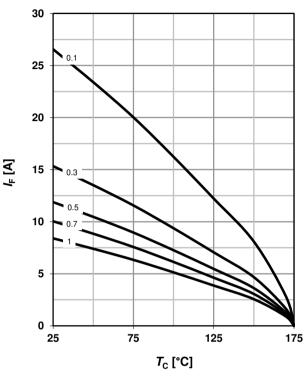
²⁾ All devices tested under avalanche conditions, for a time periode of 10ms, at 20mA.

 $^{^{3)}}$ t_c is the time constant for the capacitive displacement current waveform (independent from T_j , I_{LOAD} and di/dt), different from t_{rr} which is dependent on T_j , I_{LOAD} and di/dt. No reverse recovery time constant t_{rr} due to absence of minority carrier injection.

 $^{^{4)}}$ Under worst case Z_{th} conditions.

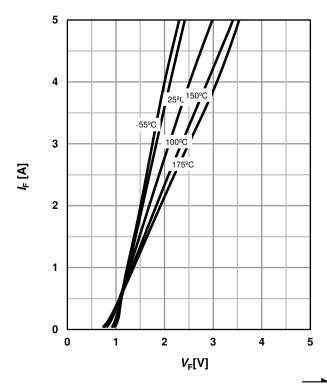
⁵⁾ Device on 40mm*40mm*1.5 epoxy PCB FR4 with 6cm² (one layer, 70μm thick) copper area for drain connection. PCB is vertical without blown air

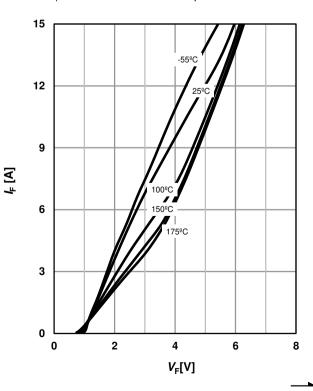

⁶⁾ Only capacitive charge occuring, guaranteed by design.



1 Power dissipation

 $P_{\text{tot}} = f(T_{\text{C}})$; parameter: $R_{\text{thJC(max)}}$

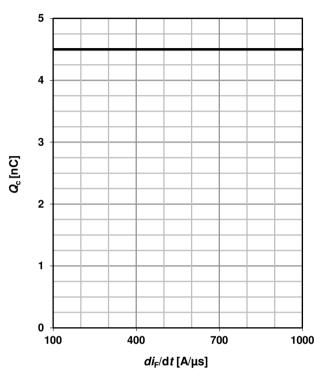

2 Diode forward current $I_F = f(T_C)^{4}$; $T_i \le 175$ °C; parameter: $D = t_p/T$

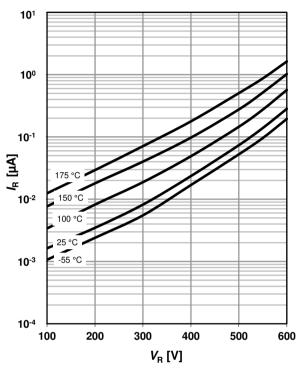

3 Typ. forward characteristic

$I_F = f(V_F)$; $t_p = 400 \mu s$; parameter: T_i

4 Typ. forward characteristic in surge current mode

 I_F =f(V_F); t_p =400 μs; parameter: T_j

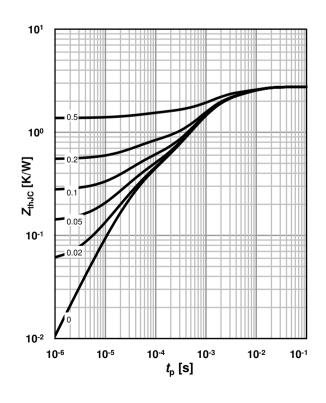


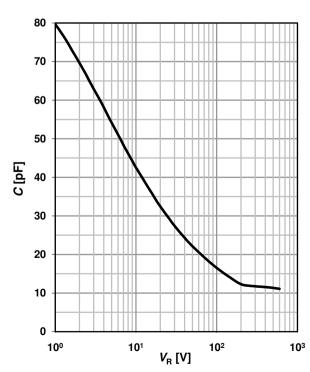

5 Typ. capacitance charge vs. current slope

$Q_{\rm C}=f(\mathrm{d}i_{\rm F}/\mathrm{d}t)^{6}$; $I_{\rm F}\leq I_{\rm F,max}$

6 Typ. reverse current vs. reverse voltage

 $I_R=f(V_R)$; parameter: T_i

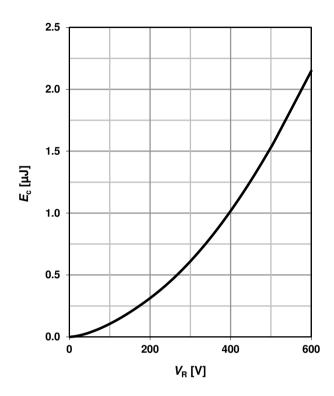


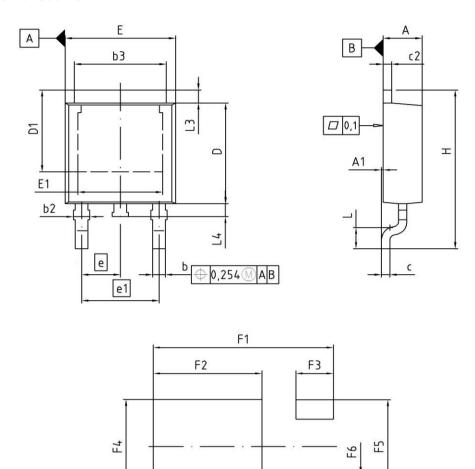

7 Transient thermal impedance

 Z_{thJC} =f(t_p); parameter: $D = t_P/T$

8 Typ. capacitance vs. reverse voltage

$$C=f(V_R); T_C=25 \text{ °C}, f=1 \text{ MHz}$$




9 Typ. C stored energy

 $E_{\rm C} = f(V_{\rm R})$

PG-TO252-3: Outline

DIM	MILLIM	ETERS	INCH	HES
DIM	MIN	MAX	MIN	MAX
Α	2.16	2.41	0.085	0.095
A1	0.00	0.15	0.000	0.006
b	0.64	0.89	0.025	0.035
b2	0.65	1.15	0.026	0.045
ь3	5.00	5.50	0.197	0.217
С	0.46	0.60	0.018	0.024
c2	0.46	0.98	0.018	0.039
D	5.97	6.22	0.235	0.245
D1	5.02	5.84	0.198	0.230
Е	6.40	6.73	0.252	0.265
E1	4.70	5.21	0.185	0.205
е	2	.29	0.0	90
e1	4.57		0.1	80
N		3	;	3
Н	9.40	10.48	0.370	0.413
L	1.18	1.70	0.046	0.067
L3	0.90	1.25	0.035	0.049
L4	0.51	1.00	0.020	0.039
F1	10.50	10.70	0.413	0.421
F2	6.30	6.50	0.248	0.256
F3	2.10	2.30	0.083	0.091
F4	5.70	5.90	0.224	0.232
F5	5.66	5.86	0.223	0.231
F6	1.10	1.30	0.043	0.051

DOCUMENT NO. Z8B00003328
SCALE 0
2.0- 0 2.0 4mm
EUROPEAN PROJECTION
ISSUE DATE 19-10-2007
REVISION 03

Dimensions in mm/inches

Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support systems are intended to be implanted in the human body and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.