

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PRECISION CLOCK GENERATOR OC-48 APPLICATIONS

IDT5T929

PRODUCT DISCONTINUATION NOTICE - LAST TIME BUY EXPIRES ON OCTOBER 28, 2014

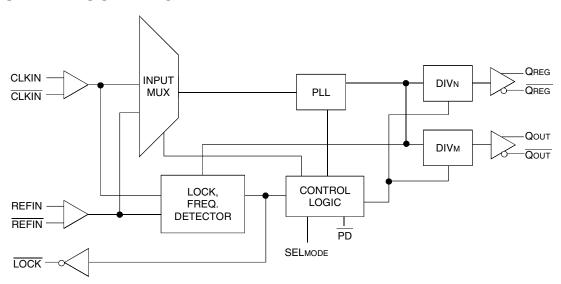
FEATURES:

- Input frequency:
 - For SONET non-FEC: 19.44MHz, 38.88MHz, 77.76MHz, 155.52MHz, 311.04MHz. or 622.08MHz
 - For SONET FEC: 20.83MHz, 41.66MHz, 83.31MHz, 166.63MHz, 333.26MHz, or 666.52MHz
 - For 10GE copper: 19.53MHz, 39.06MHz, 78.125MHz, 156.25MHz, 312.5MHz, or 625MHz
 - For 10GE optical: 20.14MHz, 40.28MHz, 80.56MHz, 161.13MHz, 322.26MHz, or 644.53MHz
- · Output frequency range selection
- 1x, 2x, 4x, 8x, 16x, and 32x outputs on Qout
- Regenerated input clock on QREG
- Lock indicator
- · Power-down mode
- . LVPECL or LVDS outputs
- . Two modes of output frequency range
 - Mode 0: Qout range 155.5 166.6MHz. Qreg is a regenerated version of the input clock.
 - Mode 1: Qout range 622 666.5MHz. QREG is a regenerated version of the input clock frequency.
- · Hitless switchover
- · Differential LVPECL, LVDS, or single-ended LVTTL input interface
- 2.375 3.465V core and I/O
- Available in VFQFPN package
- use Replacement part: 8T49N222B-dddNLGI

DESCRIPTION:

The IDT5T929 generates a high precision FEC (Forward Error Correction) or non-FEC source clock for SONET/SDH systems as well as a source clock for Gigabit Ethernet systems. This device also has clock regeneration capability: it creates a "clean" version of the clock input by using the internal oscillator to square the input clock's rising and falling edges and remove jitter. In the event that the main clock input fails, the device automatically locks to a backup reference clock using a hitless switchover mechanism.

This device detects loss of valid CLKIN and leaves the VCO of the PLL at the last valid frequency while an alternate input REFIN is selected. If CLKIN and REFIN are different frequencies, the multiplication factor will be adjusted to retain the same output frequency.

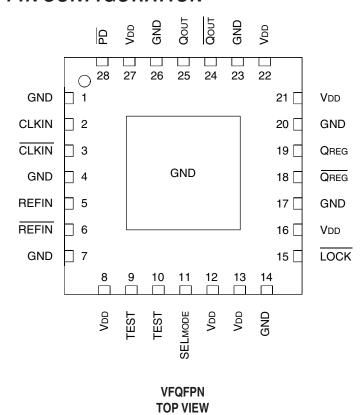

The IDT5T929 can act as a translator from a differential LVPECL, LVDS, or single-ended LVTTL input to LVPECL or LVDS outputs. The IDT5T929-10 has LVDS outputs and the IDT5T929-30 has LVPECL outputs.

The two modes of output frequency range are controlled by the SELmode. When SELmode is high or low, the Qout is a multiplied version of the input clock while QREG is a regenerated version of the input clock.

APPLICATIONS:

- · Terabit routers
- · Gigabit ethernet systems
- SONET / SDH systems
- · Digital cross connects
- · Optical transceiver modules

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

MAY 2013

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VDD	Power Supply Voltage	-0.5 to +4.1	٧
Vı	Input Voltage	-0.5 to +4.1	
Vo	Output Voltage	-0.5 to VDD+0.5	٧
TJ	Junction Temperature	150	°C
Tstg	Storage Temperature	-65 to +165	°C

NOTE:

 Stresses beyond those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability.

CAPACITANCE(TA = +25°C, f = 1MHz, VIN = 0V)

Parameter	Description	Тур.	Max.	Unit
CIN	Input Capacitance	2.5	3	pF
Соит	Output Capacitance	_	_	pF

NOTE:

1. Capacitance applies to all inputs except SELmode.

RECOMMENDED OPERATING RANGE

Symbol	Description	Min.	Тур.	Max.	Unit
TA	Ambient Operating Temperature	-40	+25	+85	°C
VDD	Power Supply Voltage	2.375		3.465	V
VT	Termination Voltage (LVPECL)	_	VDD-2	_	V
	Termination Voltage (LVDS)	_	1.2	_	

INPUT FREQUENCY RANGE(1)

19.4MHz - 20.9MHz
38.8MHz - 41.7MHz
77.7MHz - 83.4MHz
155.5MHz - 167MHz
311MHz - 334MHz
622MHz - 667MHz

NOTE:

 The PLL will automatically detect the input frequency and adjust the multiply ratio to generate the appropriate output frequency.

LOCK FREQUENCY DETECTOR

The 5T929 will lock to, and track, a valid CLKIN signal; \overline{LOCK} will be low when this has occurred. If CLKIN fails, the 5T929 PLL will smoothly switch to lock to REFIN without generating any glitches on the output. The fact that the PLL is locked to REFIN rather than CLKIN is indicated by a high state on \overline{LOCK} . When a valid input is then applied to CLKIN, the 5T929 will smoothly switch back to locking on CLKIN, and \overline{LOCK} will go low. \overline{LOCK} will also switch to high should the frequency of CLKIN drift close to the limits of the VCO tuning range.

OUTPUT FREQUENCY RANGE

SELmode	Qout/Qout	QREG/QREG	Unit
L	155.5 - 166.6	regenerated CLKIN/CLKIN	MHz
Н	622-666.5	regenerated CLKIN/CLKIN	MHz

PIN DESCRIPTION

Pin Name	I/O	Туре	Description
CLKIN, CLKIN	I	Adjustable ⁽¹⁾	Differential or single-ended clock input signal. For differential, LVPECL or LVDS supported. If left open-circuited, inputs will float to LVTTL threshold voltage so that either input may be used as a single-ended input. A capacitor to ground should be connected on the floating input.
REFIN, REFIN	_	Adjustable ⁽¹⁾	Differential reference clock input. The reference clock input is used as an input to the PLL when CLKIN/CLKIN fails. Differential or single-ended clock input signal. For differential, LVPECL or LVDS supported. If left open-circuited, inputs will float to LVTTL threshold voltage so that either input may be used as a single-ended input. A capacitor to ground should be connected on the floating input.
SELmode	-	2-level ⁽²⁾	2 level input to select output frequency range for Qout/Qout and Qred/Qred (see Output Frequency Range table)
PD	-	LVTTL	Power Down Control. Shuts off entire chip when LOW.
Qout, Qout	0	Adjustable ⁽³⁾	Differential clock output. LVPECL or LVDS outputs.
Qreg, Qreg	0	Adjustable ⁽³⁾	Regenerated clock output from CLKIN/CLKIN, LVPECL, or LVDS outputs.
LOCK	0	LVTTL	LOW when PLL is locked to CLKIN, HIGH in all other conditions
TEST			Factory testing only. This pin should be left unconnected.
NC			No connection
V _{DD}		PWR	Power Supply
GND		PWR	Ground

NOTES:

- Inputs are capable of translating the following interface standards:
 Single-ended 3.3V LVTTL levels
 Single-ended 2.5V LVTTL levels
 Differential LVPECL levels
 Differential LVDS levels
- 2. 2-level inputs are static inputs and must be tied to VDD or GND.
- 3. Outputs can be LVPECL or LVDS.

CLOCK INPUT/OUTPUT CONFIGURATION DESCRIPTION

Application	REFIN (MHz)	CKIN (MHz)	SELmode	QREG (MHz)	Qоит (МНz)
Non-FEC	19.44, 38.88, 77.76, 155.52, 311.04,	19.44	LOW	19.44	155.52
	622.08		HIGH	19.44	622.08
		38.88	LOW	38.88	155.52
			HIGH	38.88	622.08
		77.76	LOW	77.76	155.52
			HIGH	77.76	622.08
	ŀ	155.52	LOW	155.52	155.52
			HIGH	155.52	622.08
	 	311.04	LOW	311.04	155.52
			HIGH	311.04	622.08
	Ī	622.08	LOW	622.08	155.52
			HIGH	622.08	622.08
FEC	20.83, 41.66, 83.31, 166.63, 333.26,	20.83	LOW	20.83	166.63
0	666.52		HIGH	20.83	666.52
		41.66	LOW	41.66	166.63
			HIGH	41.66	666.52
		83.31	LOW	83.31	166.63
		00.01	HIGH	83.31	666.52
	-	166.63	LOW	166.63	166.63
		100.00	HIGH	166.63	666.52
	-	333.26	LOW	333.26	166.63
		000.20	HIGH	333.26	666.52
	 	666.52	LOW	666.52	166.63
		000.32	HIGH	666.52	666.52
10GE copper	19.53, 39.06, 78.12, 156.25, 312.5,	19.53	LOW	19.53	156.25
ToGEcoppei	625	19.55	HIGH	19.53	625
	023	39.06	LOW	39.06	156.25
		39.00	HIGH	39.06	625
	 	78.12	LOW	78.12	156.25
		70.12	HIGH	78.12	625
	-	156.25	LOW	156.25	156.25
		130.23	HIGH	156.25	625
	-	010 5	LOW		
		312.5		312.50	156.25
		COE	HIGH	312.5	625
		625	LOW HIGH	625	156.25
10GE optical	20.14.40.29.90.56.161.10.000.00	00.14		625	625
rog⊏ optical	20.14, 40.28, 80.56, 161.13, 322.26,	20.14	LOW	20.14	161.13
	644.53	40.00	HIGH	20.14	644.53
		40.28	LOW	40.28	161.13
		00.50	HIGH	40.28	644.53
		80.56	LOW	80.56	161.13
		101.10	HIGH	80.56	644.53
		161.13	LOW	161.13	161.13
		200.00	HIGH	161.13	644.53
		322.26	LOW	322.26	161.13
			HIGH	322.26	644.53
		644.53	LOW	644.53	161.13
			HIGH	644.53	644.53

POWER SUPPLY CHARACTERISTICS(1,2)

Symbol	Parameter	Test Conditions	Тур.	Max	Unit
IDD_PD	Power Supply Current	$V_{DD} = Max., \overline{PD} = GND, All outputs unloaded$	ı	50	μΑ
Δldd	Power Supply Current per Input HIGH	VDD = Max., VIN = 2.375V	_	100	μΑ
	(LVTTL inputs only)				
Ітот	Total Power Supply Current	VDD = Max., QOUT = 622MHz, All outputs unloaded	1	200	mA

NOTES:

- 1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.
- 2. As a general requirement, these parts must be capable of operating at the maximum frequency under a nominal load at a reasonable operating temperature. That means that these parts must not burn up under extended use in a typical application.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	Test Conditions		Min.	Max	Unit
Vihh	Input HIGH Voltage Level(1)	2-Level Inputs Only		VDD - 0.4	ı	V
VILL	Input LOW Voltage Level(1)	2-Level Inputs Only		ı	0.4	V
12	2-Level Input DC Current	VIN = VDD	HIGH Level	_	200	μΑ
		Vin = GND	LOW Level	-200	_	

NOTE:

1. These inputs are normally wired to Vop or GND. If these inputs are switched dynamically after powerup, the function and timing of the outputs may be glitched, and the PLL may require additional tag time before all datasheet limits are achieved.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR LVTTL

Symbol	Parameter	Test Conditions	Min.	Тур.	Max	Unit
Іін	Input HIGH Current	VDD = 3.465V	_	-	±1	μА
lıL	Input LOW Current	VDD = 3.465V	_	-	±1	
Vık	Clamp Diode Voltage	VDD = 2.375V, IIN = -18mA	_	- 0.7	- 1.2	V
Vin	DC Input Voltage		- 0.3	ı	+3.465	V
ViH	DC Input HIGH		1.7	ı	_	V
VIL	DC Input LOW		_	_	0.7	V

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR LVPECL(1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit				
Input Chara	Input Characteristics									
lin	Input Current (CLKIN, REFIN)	VDD = 3.465V	-20	_	+20	μΑ				
VCMR	Common Mode Input Voltage		1		VDD - 0.3	V				
VDIF	Differential Voltage Required to Toggle Input				_	mV				
Output Cha	racteristics									
Voн	Output Voltage HIGH (terminated through 50Ω tied to VDD - $2V$) $^{(2)}$		VDD - 1.15	_	VDD - 0.9	V				
Vol	Output Voltage LOW (terminated through 50Ω tied to Vdd - $2V$) (2)		VDD - 1.95	_	VDD - 1.61	V				
Vswing	Peak-to-Peak Output Voltage Swing		0.55	_	0.93	V				

NOTES:

- 1. $V_{DD} = 2.375 3.645V$.
- 2. Not to exceed V_{DD} 0.05V.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR LVDS

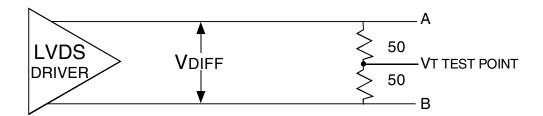
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit				
Input Chara	Input Characteristics									
lin	Input Current (CLKIN, REFIN)	VDD = 3.465V	-20	_	+20	μΑ				
Vсм	Common Mode Input Voltage Range(1)		0.9	_	V _{DD} - 0.05	V				
VDIF	Differential Voltage Required to Toggle Input		100	_	_	mV				
Output Cha	racteristics									
VOT(+)	Differential Output Voltage for the TRUE Binary State		247	_	454	mV				
Vot(-)	Differential Output Voltage for the FALSE Binary State		-247	_	-454	mV				
ΔV от	$Change in Vo\intercal Between Complementary \ Output \ States$		_	_	50	mV				
Vos	Output Common Mode Voltage (Offset Voltage)		1.125	1.2	1.375	V				
ΔVos	Change in Vos Between Complementary Output States		_	_	50	mV				
los	Outputs Short Circuit Current	Vout(+) and Vout(-) = 0V	_	9	24	mA				
losd	Differential Outputs Short Circuit Current	VOUT(+) = VOUT(-)	_	6	12	mA				

NOTE:

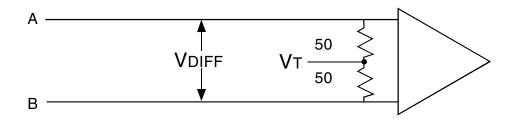
INPUT TIMING REQUIREMENTS

Symbol	Parameter	Min.	Тур.	Max.	Unit
REFH	Input Reference Clock Duty Cycle 40 50 60				%
FREF	Input Reference Clock Range	ock Range 19.44 — 666.52		MHz	
REFTOL	Input Reference Clock Frequency Tolerance -100		_	100	ppm
FCLKIN	Clock in Frequency Range 19.44 — 666.52		666.52	MHz	
CLKINH	Clock in Duty Cycle	40	50	60	%
taq	Acquisition Time from Return of Valid CLKIN	_	60	150	us
LOCKTOL	Frequency Tolerance for LOCK	-600	±450	±450 600	
t лт(тог)	Tolerance to Input Jitter	GR-253 Sect. 5.6.2.2			·

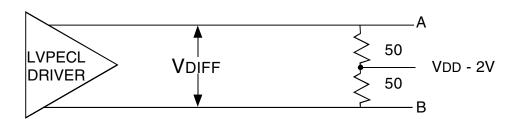
AC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

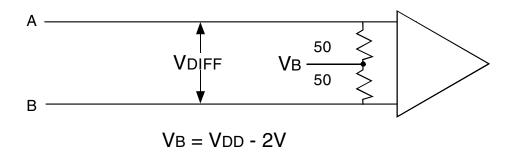

Symbol	Parameter		Min.	Тур.	Max.	Unit
Qout	Multiplied Clock Output Frequency	SELmode = LOW	155.52	_	166.63	MHz
		SELmode = HIGH	622.08	_	666.52	
QREG	Regenerated Clock Output Frequency		19.44	_	666.52	MHz
CLKIN	Input Clock Frequency		19.44	_	667	MHz
tr	Output Rise Time	LVPECL	_	150	_	ps
		LVDS	_	100	_	
t⊧	Output Fall Time	LVPECL	_	150	_	ps
		LVDS	_	100	_	
tsk	Skew between Qout and Qreg		_	10	20	ps
PLLBW	PLLBandwidth		250	305	500	KHz
†₽	JitterTransferPeaking		_	0.05	0.1	dB
		Output frequency = 622MHz - 666.5MHz	_	0.4	1	
tı	Jitter Generation ⁽¹⁾	Output frequency = 155.5MHz - 166.6MHz	_	0.8	3.4	ps (RMS)
	(with 12KHz to 20MHz filter)	Output frequency = 77.7MHz - 83.4MHz	_	1.2	3.5	
touty	Output Duty Cycle		45	_	55	%

NOTE:

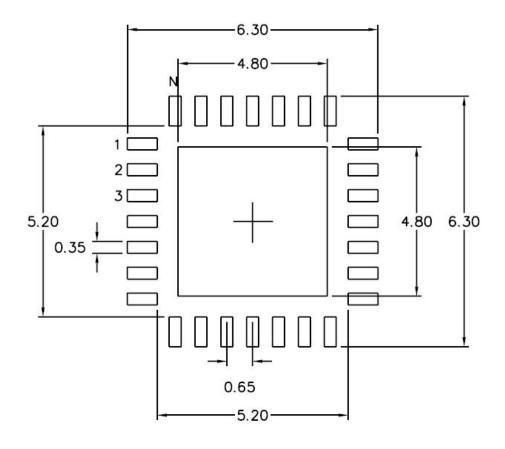

^{1.} Not to exceed VDD - 0.05V.

^{1.} All input frequencies permitted by PLL bandwidth.


TEST CONDITIONS

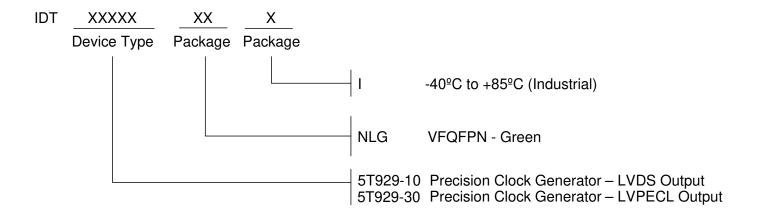

Test Circuit for LVDS Output Characteristics

Test Circuit for LVDS Input Characteristics



Test Circuit for LVPECL Output Characteristics

Test Circuit for LVPECL Input Characteristics


RECOMMENDED LANDING PATTERN

NL 28 pin

NOTE: All dimensions are in millimeters.

ORDERING INFORMATION

REVISION HISTORY

Rev	Table	Page	Discription of Change	Date
А		1	NRND - Not Recommended for New Designs	5/5/13
А		1	Product Discontinuation Notice - Last Time Buy Expires on October 28, 2014, PDN# CQ-13-02	11/27/13

We've Got Your Timing Solution.

6024 Silver Creek Valley Road San Jose, CA 95138 Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT Tech Support

netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright 2013. All rights reserved.