imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

EEPROM PROGRAMMABLE 2.5V ZERO DELAY PLL CLOCK DRIVER

1

FEATURES:

- 2.5 VDD
- 5 pairs of outputs
- Low skew: 100ps all outputs at same interface level, 250ps all outputs at different interface levels
- · Selectable positive or negative edge synchronization
- Tolerant of spread spectrum input clock
- · Synchronous output enable
- · Selectable inputs
- Input frequency: 4.17MHz to 250MHz
- Output frequency: 12.5MHz to 250MHz
- Internal non-volatile EEPROM
- JTAG or I²C bus serial interface for programming
- · Hot insertable and over-voltage tolerant inputs
- Feedback divide selection with multiply ratios of (1-6, 8, 10, 12)
- Selectable HSTL, eHSTL, 1.8V/2.5V LVTTL, or LVEPECL input interface
- Selectable HSTL, eHSTL, or 1.8V/2.5V LVTTL output interface for each output bank
- Selectable differential or single-ended inputs and ten singleended outputs
- PLL bypass for DC testing
- · External differential feedback, internal loop filter
- Low Jitter: <75ps cycle-to-cycle, all outputs at same interface level: <100ps cycle-to-cycle all outputs at different interface levels
- Power-down mode
- Lock indicator
- Available in VFQFPN package

DESCRIPTION:

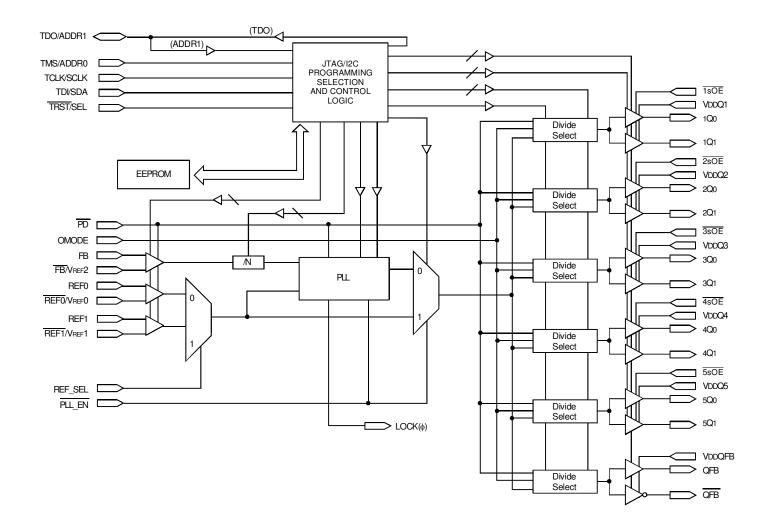
The IDT5T9820 is a 2.5V PLL clock driver intended for high performance computing and data-communications applications. The IDT5T9820 has ten outputs in five banks of two, plus a dedicated differential feedback. The redundant input capability allows for a smooth change over to a secondary clock source when the primary clock source is absent.

The clock driver can be configured through the use of $JTAG/I^2C$ programming. An internal EEPROM will allow the user to save and restore the configuration of the device.

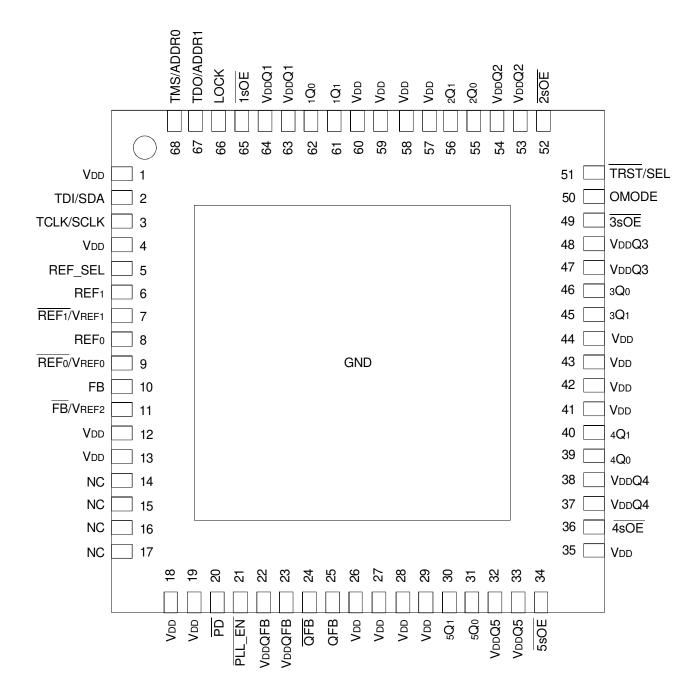
The feedback bank allows divide-by-functionality from 1 to 12 through the use of JTAG or I²C programming. This provides the user with frequency multiplication 1 to 12 without using divided outputs for feedback. Each output bank also allows for a divide-by functionality of 2 or 4.

The IDT5T9820 features a user-selectable, single-ended or differential input to ten single-ended outputs. The clock driver also acts as a translator from a differential HSTL, eHSTL, 1.8V/2.5V LVTTL, LVEPECL, or single-ended 1.8V/2.5V LVTTL input to HSTL, eHSTL, or 1.8V/2.5V LVTTL outputs. Each output bank can be individually configured to be either HSTL, eHSTL, 2.5V LVTTL, or 1.8V LVTTL, including the feedback bank. Also, each clock input can be individually configured to accept 2.5V LVTTL, 1.8V LVTTL, or differential signals. The outputs can be synchronously enabled/disabled.

Furthermore, all the outputs can be synchronized with the positive edge of the REF clock input or the negative edge of REF.


The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE


© 2004 Integrated Device Technology, Inc.

NOVEMBER 2004

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

VFQFPN TOP VIEW

INDUSTRIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Symbol Description		Unit
VDDQN, VDD	Power Supply Voltage ⁽²⁾	-0.5 to +3.6	V
VI	Input Voltage -0.5 to +3.6		V
Vo	Output Voltage	-0.5 to VDDQ +0.5	V
VREF	Reference Voltage ⁽³⁾ -0.5 to +3.6		V
TJ	Junction Temperature	150	°C
TSTG	Storage Temperature	65 to +165	°C

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

VDDON and VDD internally operate independently. No power sequencing requirements need to be met.

3. Not to exceed 3.6V.

RECOMMENDED OPERATING RANGE

Symbol	Description	Min.	Тур.	Max.	Unit
TA	Ambient Operating Temperature	-40	+25	+85	°C
VDD ⁽¹⁾	Internal Power Supply Voltage	2.3	2.5	2.7	V
	HSTL Output Power Supply Voltage	1.4	1.5	1.6	V
VDDQN ⁽¹⁾	Extended HSTL and 1.8V LVTTL Output Power Supply Voltage	1.65	1.8	1.95	V
	2.5V LVTTL Output Power Supply Voltage		Vdd		V
Vτ	Termination Voltage		Vddqn/2		V

NOTE:

1. All power supplies should operate in tandem. If VDD or VDDON is at maximum, then VDDON or VDD (respectively) should be at maximum, and vice-versa.

PIN DESCRIPTION

Symbol	I/O	Туре	Description			
REF[1:0]	Ι	Adjustable ⁽¹⁾	Clock input. REF[1:0] is the "true" side of the differential clock input. If operating in single-ended mode, REF[1:0] is the clock input.			
REF[1:0]/ Vref[1:0]	Ι	Adjustable ⁽¹⁾	Complementary clock input. $\overline{\text{REF}}_{[1:0]/\text{VREF}[1:0]}$ is the "complementary" side of $\text{REF}_{[1:0]}$ if the input is in differential mode. If operating in single-ended mode, $\overline{\text{REF}}_{[1:0]/\text{VREF}[1:0]}$ is left floating. For single-ended operation in differential mode, $\overline{\text{REF}}_{[1:0]/\text{VREF}[1:0]}$ should be set to the desired toggle voltage for $\text{REF}_{[1:0]}$:			
			2.5VLVTTL VREF = 1250mV (SSTL2 compatible)			
			1.8V LVTTL, eHSTL VREF = 900mV			
			HSTL VREF = 750mV			
			LVEPECL VREF = 1082mV			
FB	Ι	Adjustable ⁽¹⁾	Clock input. FB is the "true" side of the differential feedback clock input. If operating in single-ended mode, FB is the feedback clock input.			
FB/Vref2	Ι	Adjustable ⁽¹⁾	Complementary feedback clock input. FB/VREF2 is the "complementary" side of FB if the input is in differential mode. If operating in single- ended mode, FB/VREF2 is left floating. For single-ended operation in differential mode, FB/VREF2 should be set to the desired toggle voltage for FB:			
			2.5VLVTTL VREF = 1250mV (SSTL2 compatible)			
			1.8VLVTTL, eHSTL VREF = 900mV			
			HSTL VREF = 750mV			
			LVEPECL VREF = 1082mV			

NOTE:

1. Inputs are capable of translating the following interface standards. User can select between:

Single-ended 2.5V LVTTL levels Single-ended 1.8V LVTTL levels or Differential 2.5V/1.8V LVTTL levels Differential HSTL and eHSTL levels Differential LVEPECL levels

CAPACITANCE (TA = $+25^{\circ}$ C, f = 1MHz, VIN = 0V)

Parameter	Description	Min.	Тур.	Max.	Unit
CIN	Input Capacitance	2.5	3	3.5	рF
Соит	Output Capacitance	_	6.3	7	pF

NOTE:

1. Capacitance applies to all inputs except JTAG/I²C signals, SEL, ADDR0, and ADDR1.

PIN DESCRIPTION, CONTINUED

Symbol	I/O	Туре	Description
REF_SEL	Ι	LVTTL ⁽¹⁾	Reference clock select. When LOW, selects REF0 and REF0/VREF0. When HIGH, selects REF1 and REF1/VREF1.
nsOE	Ι	LVTTL ⁽¹⁾	Synchronous output enable/disable. Each outputs's enable/disable state can be controlled either with the \overline{nsOE} pin or through JTAG or I ² C programming, corresponding bits 52 - 56. When the \overline{nsOE} is HIGH or the corresponding Bit (52 - 56) is 1, the output will be synchronously disabled. When the \overline{nsOE} is LOW and the corresponding Bit (52 - 56) is 0, the output will be enabled. (See JTAG/I ² C Serial Configuration table.)
QFB	0	Adjustable ⁽²⁾	Feedback clock output
QFB	0	Adjustable ⁽²⁾	Complementary feedback clock output
nQ[1:0]	0	Adjustable ⁽²⁾	Five banks of two outputs
PLL_EN	Ι	LVTTL ⁽¹⁾	PLL enable/disable control. The PLL's enable/disable state can be controlled either with the PLL_EN pin or through JTAG or I ² C programming, corresponding Bit 57. When PLL_EN is HIGH or the corresponding Bit 57 is 1, the PLL is disabled and REF[1:0] goes to all outputs. When PLL_EN is LOW and the corresponding Bit 57 is 0, the PLL will be active.
PD	Ι	LVTTL ⁽¹⁾	Power down control. When \overline{PD} is LOW, the inputs are disabled and internal switching is stopped. The OMODE pin in conjunction with the corresponding Bit 59 selects whether the outputs are gated LOW/HIGH or tri-stated. When OMODE is HIGH or Bit 59 is 1, Bit 58 determines the level at which the outputs stop. When Bit 58 is 0/1, the nQ[1:0] and QFB are stopped in a HIGH/LOW state, while the QFB is stopped in a LOW/HIGH state. When OMODE is LOW and Bit 59 is 0, the outputs are tri-stated. Set \overline{PD} HIGH for normal operation. (See JTAG/I ² C Serial Configuration table.)
LOCK	0	LVTTL	PLL lock indication signal. HIGH indicates lock. LOW indicates that the PLL is not locked and outputs may not be synchronized to the inputs. The output will be 2.5V LVTTL. (For more information on application specific use of the LOCK pin, please see AN237.)
OMODE	Ι	LVTTL ⁽¹⁾	Output disable control. Used in conjunction with $nsOE$ and \overline{PD} . The outputs' disable state can be controlled either with the OMODE pin or through JTAG or I ² C programming, corresponding Bit 59. When OMODE is HIGH or the corresponding Bit 59 is 1, the outputs' disable state will be gated and Bit 58 will determine the level at which the outputs stop. When Bit 58 is 0/1, the nQ[1:0] and QFB are stopped in a HIGH/LOW state, while the \overline{QFB} is stopped in a LOW/HIGH state. When OMODE is LOW and its corresponding bit 59 is 0, the outputs disable state will be the tri-state. (See JTAG/I ² C Serial Configuration table.)
TRST/SEL	I/I	LVTTL/	TRST- Active LOW input to asynchronously reset the JTAG boundary-scan circuit.
		LVTTL ^(4,5)	SEL - Select programming interface control for the dual-function pins. When HIGH, the dual-function pins are set for JTAG programming. When LOW, the dual-function pins are set for I ² C programming and the JTAG interface is asynchronously placed in the Test Logic Reset state.
TDO/ADDR1	O/I	LVTTL/ 3-Level ^(3,4,5)	TDO - Serial data output pin for instructions as well as test and programming data. Data is shifted in on the falling edge of TCLK. The pin is tri-stated if data is not being shifted out of the device.
			ADDR1 - Used to define a unique I ² C address for this device. Only for I ² C programming. (See JTAG/I ² C Serial Interface Description.)
TMS/ADDR0	1/1	LVTTL/ 3-Level ^(3,4,5)	TMS - Input pin that provides the control signal to determine the transitions of the JTAG TAP controller state machine. Transitions within the state machine occur at the rising edge of TCLK. Therefore, TMS must be set up before the rising edge of TCLK. TMS is evaluated on the rising edge TCLK.
			ADDR0 - Used to define a unique I ² C address for this device. Only for I ² C programming. (See JTAG/I ² C Serial Interface Description.)
TCLK/SCLK	1/1	LVTTL/	TCLK - The clock input to the JTAG BST circuitry
		LVTTL ^(4,5)	SCLK - Serial clock for I ² C programming
TDI/SDA	1/1	LVTTL/	TDI - Serial input pin for instructions as well as test and programming data. Data is shifted in on the rising edge of TCLK.
		LVTTL ^(4,5)	SDA - Serial data for I ² C programming. (See JTAG/I ² C Serial Description table.)
VDDQN		PWR	Power supply for each pair of outputs. When using 2.5V LVTTL, 1.8V LVTTL, HSTL, or eHSTL outputs, VDDQN should be set to its corresponding outputs (see Front Block Diagram). When using 2.5V LVTTL outputs, VDDQN should be connected to VDD.
Vdd		PWR	Power supply for phase locked loop, lock output, inputs, and other internal circuitry
GND		PWR	Ground

NOTES:

1. Pins listed as LVTTL inputs can be configured to accept 1.8V or 2.5V signals through the use of the I²C/JTAG programming, bit 61. (See JTAG/I²C Serial Description.)

2. Outputs are user selectable to drive 2.5V, 1.8V LVTTL, eHSTL, or HSTL interface levels when used with the appropriate VDDON voltage.

3. 3-level inputs are static inputs and must be tied to VDD or GND or left floating. These inputs are not hot-insertable or over voltage tolerant.

4. The JTAG (TDO, TMS, TCLK, and TDI) and I²C (ADDR1, ADDR0, SCLK, and SDA) signals share the same pins (dual-function pins) for which the TRST/SEL pin will select between the two programming interfaces.

5. JTAG and I²C pins accept 2.5V signals. The JTAG input pins (TMS, TCLK, TDI, TRST) will also accept 1.8V signals.

JTAG/ I²C SERIAL DESCRIPTION

Bit	Description
95:62	Reserved Bits. Set bits 95:62 to '0'.
61	Input Interface Selection for control pins (REF_SEL, PD, PLL_EN, OMODE, nsOE). When bit 61 is '1', the control pins are 2.5V LVTTL. When bit 61 is '0', the control pins are 1.8V LVTTL.
60	VCO Frequency Range. When '0', range is 50MHz-125MHz. When '1', range is 100MHz-250MHz.
59	Output's Disable State. See corresponding external pin OMODE in Pin Description table.
58	Positive/Negative Edge Control. When '0'/'1', the outputs are synchronized with the negative/positive edge of the reference clock.
57	PLL Enable/Disable. See corresponding external pin $\overline{PLL_{EN}}$ in Pin Description table. ⁽¹⁾
56	Output Enable/Disable for $1Q_{[1:0]}$ outputs. See corresponding external pin $\overline{1sOE}$ in Pin Description table.
55	Output Enable/Disable for $2Q_{[1:0]}$ outputs. See corresponding external pin $\overline{2sOE}$ in Pin Description table.
54	Output Enable/Disable for $3Q_{[1:0]}$ outputs. See corresponding external pin $\overline{3sOE}$ in Pin Description table.
53	Output Enable/Disable for $4Q_{[1:0]}$ outputs. See corresponding external pin $\overline{4sOE}$ in Pin Description table.
52	Output Enable/Disable for $5Q_{[1:0]}$ outputs. See corresponding external pin $\overline{550E}$ in Pin Description table.
51	FB Divide-by-N selection
50	FB Divide-by-N selection
49	FB Divide-by-N selection
48	FB Divide-by-N selection
47	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 1
46	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 1
45	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 2
44	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 2
43	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 3
42	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 3
41	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 4
40	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 4
39	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 5
38	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 5
37	FB output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on FB bank
36	FB output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on FB bank
35	REF0 Input interface selection for 2.5V LVTTL, 1.8V LVTTL, or Differential
34	REF0 Input interface selection for 2.5V LVTTL, 1.8V LVTTL, or Differential
33	REF1 input interface selection for 2.5V LVTTL, 1.8V LVTTL, or Differential
32	REF1 input interface selection for 2.5V LVTTL, 1.8V LVTTL, or Differential
31	FB input interface selection for 2.5V LVTTL, 1.8V LVTTL, or Differential
30	FB input interface selection for 2.5V LVTTL, 1.8V LVTTL, or Differential
29	Divide selection for bank 1
28	Divide selection for bank 1
27	Divide selection for bank 1
26	Divide selection for bank 1
25	Divide selection for bank 1
24	Divide selection for bank 2
23	Divide selection for bank 2
22	Divide selection for bank 2
21	Divide selection for bank 2

NOTE:

1. Only for EEPROM operation; bit 57 must be set to 0 to enable the PLL for proper EEPROM operation. The EEPROM access times are based on the VCO frequency of the PLL (refer to the EEPROM Operation section).

JTAG/I²C SERIAL DESCRIPTION, CONT.

Bit	Description
20	Divide selection for bank 2
19	Divide selection for bank 3
18	Divide selection for bank 3
17	Divide selection for bank 3
16	Divide selection for bank 3
15	Divide selection for bank 3
14	Divide selection for bank 4
13	Divide selection for bank 4
12	Divide selection for bank 4
11	Divide selection for bank 4
10	Divide selection for bank 4
9	Divide selection for bank 5
8	Divide selection for bank 5
7	Divide selection for bank 5
6	Divide selection for bank 5
5	Divide selection for bank 5
4	Divide selection for FB bank
3	Divide selection for FB bank
2	Divide selection for FB bank
1	Divide selection for FB bank
0	Divide selection for FB bank

JTAG/I²C SERIAL CONFIGURATIONS: OUTPUT ENABLE/DISABLE

Bit 59 (OMODE) Bit 56-52 (nsOE)		Output
X (X)	0 and (L)	Normal Operation
0 and (L)	1 or (H)	Tri-Sate
1 or (H) 1 or (H)		Gated ⁽¹⁾

NOTE:

 OMODE and its corresponding Bit 59 selects whether the outputs are gated LOW/ HIGH or tri-stated. When OMODE is HIGH or the corresponding Bit 59 is 1, the outputs' disable state will be gated. Bit 58 determines the level at which the outputs stop. When Bit 58 is 0/1, the nQ[1:0] and QFB are stopped in a HIGH/LOW state, while the QFB is stopped in a LOW/HIGH state. When OMODE is LOW and its corresponding Bit 59 is 0, the outputs' disable state will be the tri-state.

JTAG/I²C SERIAL CONFIGURATIONS: CLOCK INPUT INTERFACE SELEC-TION⁽¹⁾

Bit 31, 33, 35	Bit 30, 32, 34	Interface	
0	0	Differential ⁽²⁾	
0	1	2.5V LVTTL	
1	1	1.8VLVTTL	
NOTEO			

NOTES:

1. All other states that are undefined in the table will be reserved.

2. Differential input interface for HSTL/eHSTL, LVEPECL (2.5V), and 2.5V/1.8V LVTTL.

JTAG/I²C SERIAL CONFIGURATIONS: POWERDOWN

PD	Bit 59 (OMODE)	Output	
Н	X (X)	Normal Operation	
L	0 and (L)	Tri-Sate	
L	1 or (H)	Gated ⁽¹⁾	

NOTE:

 OMODE and its corresponding Bit 59 selects whether the outputs are gated LOW/ HIGH or tri-stated. When OMODE is HIGH or the corresponding Bit 59 is 1, the outputs' disable state will be gated. Bit 58 determines the level at which the outputs stop. When Bit 58 is 0/1, the nQ[1:0] and QFB are stopped in a HIGH/LOW state, while the QFB is stopped in a LOW/HIGH state. When OMODE is LOW and its corresponding Bit 59 is 0, the outputs' disable state will be the tri-state.

JTAG/I²C SERIAL CONFIGURATIONS: OUTPUT DRIVE STRENGTH SELECTION⁽¹⁾

Bit 36, 38, 40,	
42, 44, 46	Interface
0	2.5VLVTTL
1	1.8VLVTTL
0	HSTL/eHSTL

NOTE:

1. All other states that are undefined in the table will be reserved.

JTAG/I²C SERIAL CONFIGURATIONS: SKEW OR FREQUENCY SELECT⁽¹⁾

Bit 4, 9, 14, 19, 24, 29	Bit 3, 8, 13, 18, 23, 28	Bit 2, 7, 12, 17, 22, 27	Bit 1, 6, 11, 16, 21, 26	Bit 0, 5, 10, 15, 20, 25	Output Skew
0	0	0	0	0	Zero Skew
1	0	0	0	0	Inverted
1	0	0	0	1	Divide-by-2
1	0	0	1	0	Divide-by-4

NOTE:

1. All other states that are undefined in the table will result in zero skew.

JTAG/I²C SERIAL CONFIGURATIONS: FB DIVIDE-BY-N⁽¹⁾

Bit 51	Bit 50	Bit 49	Bit 48	Divide-by-N	Permitted Output Divide-by-N connected to FB and $\overline{FB}/VREF2$ ⁽²⁾
0	0	0	0	1	1, 2, 4
0	0	0	1	2	1,2
0	0	1	0	3	1
0	0	1	1	4	1,2
0	1	0	0	5	1,2
0	1	0	1	6	1,2
0	1	1	0	8	1
0	1	1	1	10	1
1	0	0	0	12	1

NOTES:

1. All other states that are undefined in the table will be reserved.

2. Permissible output division ratios connected to FB and FB/VREF2. The frequencies of the REF[1:0] and REF [1:0]/VREF[1:0] inputs will be Fvco/N when the parts are configured for frequency multiplication by using an undivided output for FB and FB/VREF2 and setting N (N = 1-6, 8, 10, 12).

EXTERNAL DIFFERENTIAL FEEDBACK

By providing a dedicated external differential feedback, the IDT5T9820 gives users flexibility with regard to divide selection. The FB and $\overline{\text{FB}}$ /VREF2 signals are compared with the input REF[1:0] and $\overline{\text{REF}}$ [1:0]/VREF[1:0] signals at the phase detector in order to drive the VCO. Phase differences cause the VCO of the PLL to adjust upwards or downwards accordingly.

An internal loop filter moderates the response of the VCO to the phase detector. The loop filter transfer function has been chosen to provide minimal jitter (or frequency variation) while still providing accurate responses to input frequency changes.

MASTER RESET FUNCTIONALITY

The IDT5T9820 performs a reset of the internal output divide circuitry when all five output banks are disabled by toggling the \overline{nSOE} pins HIGH. When one or more banks of outputs are enabled by toggling the \overline{nSOE} LOW (if the corresponding \overline{nSOE} programming bits are also set LOW), the divide circuitry starts again from a known state. In the case that the FB output is selected for divide-by-2 or divide-by-4, the FB output will stop toggling while all five \overline{nSOE} pins and bits are LOW, and loss of lock will occur.

INPUT/OUTPUT SELECTION(1)

Input	Output ⁽²⁾
2.5V LVTTL SE	2.5VLVTTL,
1.8V LVTTL SE	1.8VLVTTL,
2.5V LVTTL DSE	HSTL,
1.8V LVTTL DSE	eHSTL
LVEPECL DSE	
eHSTL DSE	
HSTL DSE	
2.5V LVTTL DIF	
1.8V LVTTL DIF	
LVEPECL DIF]
eHSTL DIF	
HSTL DIF	

NOTES:

 The INPUT/OUTPUT SELECTION Table describes the total possible combinations of input and output interfaces. Single-Ended (SE) inputs in a single-ended mode require the REF[1:0] /NREF[1:0] and FB/VREF2 pins to be left floating. Differential Single-Ended (DSE) is for single-ended operation in differential mode, requiring VREF[1:0] and VREF2. Differential (DIF) inputs are used only in differential mode.

2. For each output bank.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter		Min.	Max	Unit	
Vihh	Input HIGH Voltage Level ⁽¹⁾	3-Level Inputs Only		Vdd - 0.4	_	V
VIMM	Input MID Voltage Level ⁽¹⁾	3-Level Inputs Only		Vdd/2 - 0.2	VDD/2 + 0.2	V
VILL	Input LOW Voltage Level ⁽¹⁾	3-Level Inputs Only		_	0.4	V
		Vin = Vdd	HIGH Level	_	200	
l3	3-Level Input DC Current	$V_{IN} = V_{DD}/2$	MID Level	-50	+50	μA
	(ADDR0, ADDR1)	Vin = GND	LOW Level	-200	_	
IPU	Input Pull-Up Current	V _{DD} = Max., V _{IN} = GND		-100	—	μΑ

NOTE:

1. These inputs are normally wired to VDD, GND, or left floating. Internal termination resistors bias unconnected inputs to VDD/2. If these inputs are switched dynamically after powerup, the function and timing of the outputs may be glitched, and the PLL may require additional tLOCK time before all datasheet limits are achieved.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR HSTL⁽¹⁾

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽⁷⁾	Max	Unit
Input Chara	cteristics	•		•		•	
Ін	Input HIGH Current	Vdd = 2.7V	VI = VDDQN/GND	—	_	±5	μA
lı∟	Input LOW Current	Vdd = 2.7V	VI = GND/VDDQN	—	_	±5	
Vik	Clamp Diode Voltage	Vdd = 2.3V, Iin =	-18mA	—	- 0.7	- 1.2	V
Vin	DC Input Voltage			- 0.3		+3.6	V
Vdif	DC Differential Voltage ^(2,8)			0.2		—	V
Vсм	DC Common Mode Input Voltage ^(3,8)			680	750	900	mV
Vih	DC Input HIGH ^(4,5,8)			Vref + 100		—	mV
VIL	DC Input LOW ^(4,6,8)			—		Vref - 100	mV
VREF	Single-Ended Reference Voltage ^(4,8)			—	750	—	mV
Jutput Cha	racteristics	•					
Vон	Output HIGH Voltage	Іон = -8mA		VDDQN - 0.4		—	V
		Іон = -100μА		VDDQN - 0.1		—	
Vol	Output LOW Voltage	IoL = 8mA		—		0.4	V
		loL = 100μA		_		0.1	

NOTES:

Vox

1. See RECOMMENDED OPERATING RANGE table.

FB/FB Output Crossing Point

2. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.

VDDQN/2 - 150

VDDQN/2

VDDQN/2 + 150

mV

- 3. Vcm specifies the maximum allowable range of (VTR + VcP) /2. Differential mode only.
- 4. For single-ended operation, in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].
- 5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
- 6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.
- 7. Typical values are at VDD = 2.5V, VDDQN = 1.5V, +25°C ambient.

8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output Selection table.)

POWER SUPPLY CHARACTERISTICS FOR HSTL OUTPUTS⁽¹⁾

Symbol	Parameter	Test Conditions ⁽²⁾	Тур.	Max	Unit
Ισσα	Quiescent VDD Power Supply Current ⁽³⁾	VDDQN = Max., REF = LOW, \overline{PD} = HIGH, \overline{nSOE} = LOW,	112	150	mA
		PLL_EN = HIGH, Outputs enabled, All outputs unloaded			
Ισσα	Quiescent VDDQN Power Supply Current ⁽³⁾	VDDQN = Max., REF = LOW, PD = HIGH, NOOE = LOW,	3	75	μA
		PLL_EN = HIGH, Outputs enabled, All outputs unloaded			
IDDPD	Power Down Current	VDD = Max., PD = LOW, NSOE = LOW, PLL_EN = HIGH	0.7	3	mA
lodd	Dynamic Vod Power Supply	VDD = Max., VDDQN = Max., CL = 0pF	22	30	μA/MHz
	Current per Output				
Idddq	Dynamic VDDQN Power Supply	VDD = Max., VDDQN = Max., CL = 0pF	18	30	μA/MHz
	Current per Output				
Ітот	Total Power VDD Supply Current ^(4,5)	VDDQN = 1.5V, FVC0 = 100MHz, CL = 15pF	280	400	mA
		VDDQN = 1.5V, FVCO = 250MHz, CL = 15pF	320	450	
Ιτοτα	Total Power VDDQN Supply Current ^(4,5)	VDDQN = 1.5V, FVCO = 100MHz, CL = 15pF	130	200	mA
		VDDQN = 1.5V, Fvco = 250MHz, CL = 15pF	225	330	1

NOTES:

1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.

2. The termination resistors are excluded from these measurements.

3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.

4. Bit 60 = 1.

5. All outputs are at the same interface level.

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR HSTL

Symbol	Parameter	Value	Units
Vdif	Input Signal Swing ⁽¹⁾	1	V
Vx	Differential Input Signal Crossing Point ⁽²⁾	750	mV
Vтні	Input Timing Measurement Reference Level ⁽³⁾	Crossing Point	V
tR, tF	Input Signal Edge Rate ⁽⁴⁾	1	V/ns

NOTES:

1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.

2. A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions.

3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.

4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR eHSTL⁽¹⁾

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽⁷⁾	Max	Unit	
Input Characteristics								
Ін	Input HIGH Current	VDD = 2.7V	$V_{I} = V_{DDQN}/GND$	—	_	±5	μA	
IIL	Input LOW Current	VDD = 2.7V	$V_{I} = GND/V_{DDQN}$	—	_	±5		
Vк	Clamp Diode Voltage	Vdd = 2.3V, Iin =	-18mA	—	- 0.7	- 1.2	V	
Vin	DC Input Voltage			- 0.3		+3.6	V	
Vdif	DC Differential Voltage ^(2,8)			0.2		_	V	
Vсм	DC Common Mode Input Voltage ^(3,8)			800	900	1000	mV	
VIH	DC Input HIGH ^(4,5,8)			Vref + 100		—	mV	
VIL	DC Input LOW ^(4,6,8)			—		VREF - 100	mV	
VREF	Single-Ended Reference Voltage ^(4,8)			—	900	—	mV	
Output Cha	racteristics	•		•				

output Characteristics

Vон	Output HIGH Voltage	Іон = -8mA	VDDQN - 0.4		—	V
		Іон = -100μА	VDDQN - 0.1		—	V
Vol	Output LOW Voltage	Iol = 8mA	—		0.4	V
		lol = 100μA	—		0.1	V
Vox	FB/FB Output Crossing Point		Vddqn/2 - 150	Vddqn/2	Vddqn/2 + 150	mV

NOTES:

1. See RECOMMENDED OPERATING RANGE table.

2. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.

- 3. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.
- 4. For single-ended operation, in a differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].

5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.

6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.

7. Typical values are at VDD = 2.5V, VDDQN = 1.8V, +25°C ambient.

8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output Selection table.)

POWER SUPPLY CHARACTERISTICS FOR eHSTL OUTPUTS⁽¹⁾

Symbol	Parameter	Test Conditions ⁽²⁾	Тур.	Max	Unit
Iddq	Quiescent VDD Power Supply Current ⁽³⁾	VDDQN = Max., REF = LOW, PD = HIGH, NOTE = LOW,	112	150	mA
		PLL_EN = HIGH, Outputs enabled, All outputs unloaded			
Iddqq	Quiescent VDDQN Power Supply Current ⁽³⁾	$VDDQN = Max., REF = LOW, \overline{PD} = HIGH, \overline{nSOE} = LOW,$	3	75	μA
		PLL_EN = HIGH, Outputs enabled, All outputs unloaded			
IDDPD	Power Down Current	$V_{DD} = Max., \overline{PD} = LOW, \overline{nSOE} = LOW, \overline{PLL} = HIGH$	0.7	3	mA
Iddd	Dynamic Vod Power Supply	VDD = Max., VDDQN = Max., CL = 0pF	22	30	μA/MHz
	Current per Output				
Idddq	Dynamic VDDQN Power Supply	VDD = Max., VDDQN = Max., CL = 0pF	22	30	μA/MHz
	Current per Output				
Ітот	Total Power VDD Supply Current ^(4,5)	VDDQN = 1.8V, FVC0 = 100MHz, CL = 15pF	280	400	mA
		VDDQN = 1.8V, FVCO = 250MHz, CL = 15pF	320	450	
Ιτοτα	Total Power VDDQN Supply Current ^(4,5)	VDDQN = 1.8V, FVC0 = 100MHz, CL = 15pF	160	250	mA
		VDDQN = 1.8V, FVCO = 250MHz, CL = 15pF	280	400	

NOTES:

1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.

2. The termination resistors are excluded from these measurements.

3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.

- 4. Bit 60 = 1.
- 5. All outputs are at the same interface level.

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR eHSTL

Symbol	Parameter	Value	Units
Vdif	Input Signal Swing ⁽¹⁾	1	V
Vx	Differential Input Signal Crossing Point ⁽²⁾	900	mV
Vthi	Input Timing Measurement Reference Level ⁽³⁾	Crossing Point	V
tR, tF	Input Signal Edge Rate ⁽⁴⁾	1	V/ns

NOTES:

1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.

2. A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions.

3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.

4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR LVEPECL⁽¹⁾

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽²⁾	Max	Unit		
Input Chara	nput Characteristics								
Ін	Input HIGH Current	VDD = 2.7V	$V_I = V_{DDQN}/GND$	—	_	±5	μA		
١L	Input LOW Current	VDD = 2.7V	VI = GND/VDDQN	—	—	±5			
Vік	Clamp Diode Voltage	Vdd = 2.3V, Iin = -18mA		—	- 0.7	- 1.2	V		
Vin	DC Input Voltage			- 0.3	—	3.6	V		
Vсм	DC Common Mode Input Voltage ^(3,5)			915	1082	1248	mV		
Vref	Single-Ended Reference Voltage ^(4,5)			—	1082	-	mV		
Vih	DC Input HIGH			1275	—	1620	mV		
Vil	DC Input LOW			555	_	875	mV		

NOTES:

1. See RECOMMENDED OPERATING RANGE table.

2. Typical values are at VDD = 2.5V, +25°C ambient.

3. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.

4. For single-ended operation while in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].

5. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output Selection table.)

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR LVEPECL

Symbol	Parameter	Value	Units
Vdif	Input Signal Swing ⁽¹⁾	732	mV
Vx	Differential Input Signal Crossing Point ⁽²⁾	1082	mV
Vтні	Input Timing Measurement Reference Level ⁽³⁾	Crossing Point	V
tr, tr	Input Signal Edge Rate ⁽⁴⁾	1	V/ns

NOTES:

1. The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.

2. A 1082mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions.

3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.

4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR 2.5V LVTTL⁽¹⁾

Symbol	Parameter	Test Co	nditions	Min.	Typ. ⁽⁸⁾	Max	Unit
Input Chara	cteristics	•		•			
Ін	Input HIGH Current	Vdd = 2.7V	VI = VDDQN/GND	—	_	±5	μA
lil	InputLOWCurrent	VDD = 2.7V	VI = GND/VDDQN		_	±5	
Vік	Clamp Diode Voltage	Vdd = 2.3V, In =	-18mA		- 0.7	- 1.2	V
Vin	DC Input Voltage			- 0.3		+3.6	V
Single-End	ed Inputs ⁽²⁾						
Vih	DC Input HIGH			1.7		—	V
VIL	DC Input LOW			—		0.7	V
Differential	Inputs	-					
Vdif	DC Differential Voltage ^(3,9)			0.2		—	V
Vсм	DC Common Mode Input Voltage ^(4,9)			1150	1250	1350	mV
Vih	DC Input HIGH ^(5,6,9)			Vref + 100		—	mV
VIL	DC Input LOW ^(5,7,9)			—		VREF - 100	mV
VREF	Single-Ended Reference Voltage ^(5,9)				1250	—	mV
Output Cha	racteristics						
Main	Output UICUV altera	10mm A		Varau 0.4			V

Vон	Output HIGH Voltage	Іон = -12mA	Vddqn - 0.4	—	V
		Іон = -100μА	Vddqn - 0.1	—	V
Vol	Output LOW Voltage	lol = 12mA	—	0.4	V
		lol = 100μA	—	0.1	V

NOTES:

1. See RECOMMENDED OPERATING RANGE table.

2. For 2.5V LVTTL single-ended operation, Bits 35/34, 33/32, 31/30 = 0/1 or 1/0, and REF[1:0]/VREF[1:0]/VREF[1:0] is left floating. If Bits 47 - 36 = 0, FB/VREF2 should be left floating.

3. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.

4. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.

5. For single-ended operation, in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].

6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.

7. Voltage required to maintain a logic LOW, single-ended operation in differential mode.

8. Typical values are at VDD = 2.5V, VDDQN = VDD, +25°C ambient.

9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output Selection table.)

POWER SUPPLY CHARACTERISTICS FOR 2.5V LVTTL OUTPUTS⁽¹⁾

Symbol	Parameter	Test Conditions ⁽²⁾	Тур.	Max	Unit
Iddq	Quiescent VDD Power Supply Current ⁽³⁾	V DDQN = Max., REF = LOW, \overline{PD} = HIGH, \overline{nSOE} = LOW,	112	150	mA
		PLL_EN = HIGH, Outputs enabled, All outputs unloaded			
Iddaa	Quiescent VDDQN Power Supply Current ⁽³⁾	V DDQN = Max., REF = LOW, \overline{PD} = HIGH, \overline{nSOE} = LOW,	20	75	μA
		PLL_EN = HIGH, Outputs enabled, All outputs unloaded			
Iddpd	Power Down Current	$V_{DD} = Max., \overline{PD} = LOW, \overline{nSOE} = LOW, \overline{PLL}_{EN} = HIGH$	0.7	3	mA
Iddd	Dynamic Vod Power Supply	VDD = Max., VDDQN = Max., CL = 0pF	19	30	μA/MHz
	Current per Output				
Idddq	Dynamic VDDQN Power Supply	VDD = Max., VDDQN = Max., CL = 0pF	32	40	μA/MHz
	Current per Output				
Ітот	Total Power VDD Supply Current ^(4,5)	VDDQN = 2.5V., FVCO = 100MHz, CL = 15pF	275	400	mA
		VDDQN = 2.5V., FVCO = 250MHz, CL = 15pF	315	450	
Ιτοτα	Total Power VDDQN Supply Current ^(4,5)	VDDQN = 2.5V., FVCO = 100MHz, CL = 15pF	215	320	mA
		VDDQN = 2.5V., FVCO = 250MHz, CL = 15pF	355	530	

NOTES:

1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.

2. The termination resistors are excluded from these measurements.

3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.

4. Bit 60 = 1.

5. All outputs are at the same interface level.

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 2.5V LVTTL

Symbol	Parameter	Value	Units
VDIF	Input Signal Swing ⁽¹⁾	Vdd	V
Vx	Differential Input Signal Crossing Point ⁽²⁾	Vdd/2	V
Vтні	Input Timing Measurement Reference Level ⁽³⁾	Crossing Point	V
tR, tF	Input Signal Edge Rate ⁽⁴⁾	2.5	V/ns

NOTES:

1. A nominal 2.5V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.

2. A nominal 1.25V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions.

3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.

4. The input signal edge rate of 2.5V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.

SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 2.5V LVTTL

Symbol	Parameter	Value	Units
Vih	Input HIGH Voltage	Vdd	V
VIL	Input LOW Voltage	0	V
Vтні	Input Timing Measurement Reference Level ⁽¹⁾	Vdd/2	V
tR, tF	Input Signal Edge Rate ⁽²⁾	2	V/ns

NOTES:

1. A nominal 1.25V timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.

2. The input signal edge rate of 2V/ns or greater is to be maintained in the 10% to 90% range of the input waveform.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR 1.8V LVTTL⁽¹⁾

Symbol	Parameter	Test Co	nditions	Min.	Typ. ⁽⁸⁾	Max	Unit
Input Chara	cteristics						
Ін	Input HIGH Current	VDD = 2.7V	$V_I = V_{DDQN}/GND$		_	±5	μA
١L	Input LOW Current	VDD = 2.7V	VI = GND/VDDQN	—	_	±5	
Vік	Clamp Diode Voltage	Vdd = 2.3V, Iin =	-18mA	—	- 0.7	- 1.2	V
Vin	DC Input Voltage			- 0.3		VDDQN + 0.3	V
Single-Ende	ed Inputs ⁽²⁾						
Vih	DC Input HIGH			1.073(10)		—	V
VIL	DC Input LOW			—		0.683(11)	V
Differential	Inputs						
Vdif	DC Differential Voltage ^(3,9)			0.2		—	V
Vсм	DC Common Mode Input Voltage ^(4,9)			825	900	975	mV
Vih	DC Input HIGH ^(5,6,9)			Vref + 100		—	mV
VIL	DC Input LOW ^(5,7,9)			—		Vref - 100	mV
VREF	Single-Ended Reference Voltage ^(5,9)			—	900	—	mV
Jutput Cha	racteristics						
Vон	Output HIGH Voltage	Іон = -6mA		Vddqn - 0.4		—	V
		Іон = -100μА		Vddqn - 0.1		—	V
Vol	Output LOW Voltage	lo∟ = 6mA		—		0.4	V
		loL = 100μA		—		0.1	V

NOTES:

1. See RECOMMENDED OPERATING RANGE table.

- 2. For 1.8V LVTTL single-ended operation, Bits 35 30 = 0 and REF[1:0]/VREF[1:0] is left floating. If Bits 47/46, 45/44, 43/42, 41/40, 39/38, 37/36 = 0/1, FB/VREF2 should be left floating.
- 3. VDIF specifies the minimum input differential voltage (VTR VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
- 4. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.
- 5. For single-ended operation in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0]. The input is guaranteed to toggle within ±200mV of VREF[1:0] when VREF[1:0] is constrained within ±600mV and VDDI-600mV, where VDDI is the nominal 1.8V power supply of the device driving the REF[1:0] input. To guarantee switching in voltage range specified in the JEDEC 1.8V LVTTL interface specification, VREF[1:0] must be maintained at 900mV with appropriate tolerances.
- 6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
- 7. Voltage required to maintain a logic LOW, single-ended operation in differential mode.
- 8. Typical values are at VDD = 2.5V, VDDON = 1.8V, +25°C ambient.
- 9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output Selection table.)
- 10. This value is the worst case minimum V_H over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is $V_{IH} = 0.65 * V_{DD}$ where V_{DD} is 1.8V ± 0.15V. However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated worst case value ($V_{IH} = 0.65 * [1.8 0.15V]$) rather than reference against a nominal 1.8V supply.
- 11. This value is the worst case maximum V_{IL} over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is V_{IL} = 0.35 * V_{DD} where V_{DD} is 1.8V ± 0.15V. However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated worst case value (V_{IL} = 0.35 * [1.8 + 0.15V]) rather than reference against a nominal 1.8V supply.

POWER SUPPLY CHARACTERISTICS FOR 1.8V LVTTL OUTPUTS⁽¹⁾

Symbol	Parameter	Test Conditions ⁽²⁾	Тур.	Max	Unit
DDQ	Quiescent VDD Power Supply Current ⁽³⁾	VDDQN = Max., REF = LOW, PD = HIGH, NOOE = LOW,	112	150	mA
		PLL_EN = HIGH, Outputs enabled, All outputs unloaded			
Ισραα	Quiescent VDDQN Power Supply Current ⁽³⁾	VDDQN = Max., REF = LOW, \overline{PD} = HIGH, \overline{nSOE} = LOW,	3	75	μA
		PLL_EN = HIGH, Outputs enabled, All outputs unloaded			
IDDPD	Power Down Current	$V_{DD} = Max., \overline{PD} = LOW, \overline{nSOE} = LOW, \overline{PLL} = HIGH$	0.7	3	mA
Iddd	Dynamic Vod Power Supply	VDD = Max., VDDQN = Max., CL = 0pF	18	30	μA/MHz
	Current per Output				
IDDDQ	Dynamic VDDQN Power Supply	VDD = Max., VDDQN = Max., CL = 0pF	19	30	μA/MHz
	Current per Output				
Ітот	Total Power VDD Supply Current ^(4,5)	VDDQN = 1.8V., Fvco = 100MHz, CL = 15pF	275	400	mA
		VDDQN = 1.8V., Fvco = 250MHz, CL = 15pF	310	450	
Ιτοτα	Total Power VDDQN Supply Current ^(4,5)	VDDQN = 1.8V., Fvco = 100MHz, CL = 15pF	135	200	mA
		VDDQN = 1.8V., Fvco = 250MHz, CL = 15pF	200	300	1

NOTES:

1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.

2. The termination resistors are excluded from these measurements.

3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.

4. Bit 60 = 1.

5. All outputs are at the same interface level.

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 1.8V LVTTL

Symbol	Parameter	Value	Units
Vdif	Input Signal Swing ⁽¹⁾	Vddi	V
Vx	Differential Input Signal Crossing Point ⁽²⁾	Vddi/2	mV
Vthi	Input Timing Measurement Reference Level ⁽³⁾	Crossing Point	V
tr, tr	Input Signal Edge Rate ⁽⁴⁾	1.8	V/ns

NOTES:

1. VDDI is the nominal 1.8V supply (1.8V ± 0.15V) of the part or source driving the input. A nominal 1.8V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.

2. A nominal 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions.

3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.

4. The input signal edge rate of 1.8V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.

SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 1.8V LVTTL

Symbol	Parameter	Value	Units
Vін	Input HIGH Voltage ⁽¹⁾	Vddi	V
VIL	InputLOWVoltage	0	V
Vтні	Input Timing Measurement Reference Level ⁽²⁾	VDDI/2	mV
tr, tr	Input Signal Edge Rate ⁽³⁾	2	V/ns

NOTES:

1. VDDI is the nominal 1.8V supply (1.8V \pm 0.15V) of the part or source driving the input.

2. A nominal 900mV timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.

3. The input signal edge rate of 2V/ns or greater is to be maintained in the 10% to 90% range of the input waveform.

AC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

All outputs at the same interface level

Symbol	Parameter		Min.	Тур.	Max	Unit
FNOM	VCO Frequency Range	see JTAG/I ² C	Serial Configura	tions: VCC	Frequency Ran	ige table
t RPW	Reference Clock Pulse Width HIGH or LOV	V	1		—	ns
t FPW	Feedback Input Pulse Width HIGH or LOW		1		—	ns
tsк(в)	Output Matched Pair Skew ^(1,2,4)		—		50	ps
tsk(o)	Output Skew (Rise-Rise, Fall-Fall, Nominal)	(1,3)	—		100	ps
tsκ1(ω)	Multiple Frequency Skew (Rise-Rise, Fall-F	all, Nominal-Divided, Divided-Divided) ^(1,3,4)	—		100	ps
tsκ2(ω)	Multiple Frequency Skew (Rise-Fall, Nomina	al-Divided, Divided-Divided) ^(1,3,4)	—		400	ps
tsk1(INV)	Inverting Skew (Nominal-Inverted) ^(1,3)		—		400	ps
tsk2(INV)	Inverting Skew (Rise-Rise, Fall-Fall, Rise-Fa	all, Inverted-Divided) ^(1,3,4)	—		400	ps
tsk(pr)	Process Skew ^(1,3.5)		—		300	ps
t(φ)	REF Input to FB Static Phase Offset ⁽⁶⁾		-100		100	ps
todcv	Output Duty Cycle Variation from 50% ⁽⁷⁾	HSTL / eHSTL / 1.8V LVTTL	-375	_	375	ps
		2.5V LVTTL	-275	_	275	
torise	Output Rise Time ⁽⁸⁾	HSTL/eHSTL/1.8VLVTTL	—	_	1.2	ns
		2.5VLVTTL	—	_	1	
tofall	Output Fall Time ⁽⁸⁾	HSTL / eHSTL / 1.8V LVTTL	—	_	1.2	ns
		2.5V LVTTL	—		1	
t.	Power-up PLL Lock Time ⁽⁹⁾		—		4	ms
t∟(ω)	PLL Lock Time After Input Frequency Chang	ge ⁽⁹⁾	—		1	ms
tL(REFSEL1)	PLL Lock Time After Change in REF_SEL	9,11)	—	_	100	μs
tL(REFSEL2)	PLL Lock Time After Change in REF_SEL (F	REF1 and REF0 are different frequency) $^{(9)}$	—	_	1	ms
t∟(PD)	PLL Lock Time After Asserting PD Pin ⁽⁹⁾		—	_	1	ms
tлт(cc)	Cycle-to-Cycle Output Jitter (peak-to-peak) ⁽¹	10)	-	50	75	ps
tjit(per)	Period Jitter (peak-to-peak) ⁽¹⁰⁾		-	_	75	ps
tuit(HP)	Half Period Jitter (peak-to-peak, QFB/QFB only) ^(10, 12)		_		125	ps
tjit(duty)	Duty Cycle Jitter (peak-to-peak) ⁽¹⁰⁾		-	_	100	ps
Vox	HSTL and eHSTL Differential True and Com QFB/QFB only ⁽¹²⁾	plementary Output Crossing Voltage Level	Vddqn/2 - 150	Vddqn/2	Vddqn/2 + 150	mV

NOTES:

- 1. Skew is the time between the earliest and latest output transition among all outputs when all outputs are loaded with the specified load.
- 2. tsk(B) is the skew between a pair of outputs (nQ0 and nQ1) when all outputs are selected as the same class.

3. The measurement is made at VDDQN/2.

- 4. There are three classes of outputs: nominal (zero delay), inverted, and divided (divide-by-2 or divide-by-4 mode).
- 5. tsk(PR) is the output to corresponding output skew between any two devices operating under the same conditions (VDD and VDDON, ambient temperature, air flow, etc.).
- 6. t(φ) is measured with REF and FB the same type of input, the same rise and fall times. For 1.8V / 2.5V LVTTL input and output, the measurement is taken from VTH on REF
- to VTHI on FB. For HSTL / eHSTL input and output, the measurement is taken from the crosspoint of REF/REF to the crosspoint of FB/FB. All outputs are set to zero delay, FB input divider set to divide-by-one, and Bit 60 = 1.
- 7. $\ensuremath{ \mbox{topcv}}$ is measured with all outputs selected for zero delay.
- 8. Output rise and fall times are measured between 20% to 80% of the actual output voltage swing.
- tL, tL(ω), tL(REFSEL2), and tL(PD) are the times that are required before the synchronization is achieved. These specifications are valid only after VDD/VDDON is stable and within the normal operating limits. These parameters are measured from the application of a new signal at REF or FB, or after PD is (re)asserted until t(φ) is within specified limits.
- 10. The jitter parameters are measured with all outputs selected for zero delay, FB input divider is set to divide-by-one, and Bit 60 = 1.
- 11. Both REF inputs must be the same frequency, but up to $\pm 180^{\circ}$ out of phase.
- 12. For HSTL/eHSTL outputs only.

AC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

All outputs at the different interface levels

Symbol	Parameter		Min.	Тур.	Max	Unit
FNOM	VCO Frequency Range	see JTAG/I ² C	Serial Configura	ations: VCC	Frequency Rar	nge table
tRPW	Reference Clock Pulse Width HIGH or LOV	V	1	—	—	ns
tFPW	Feedback Input Pulse Width HIGH or LOW		1	—	—	ns
tsк(в)	Output Matched Pair Skew ^(1,2,4)		—	—	200	ps
tsk(o)	Output Skew (Rise-Rise, Fall-Fall, Nominal)	(1,3)	—	_	250	ps
tsκ1(ω)	Multiple Frequency Skew (Rise-Rise, Fall-F	all, Nominal-Divided, Divided-Divided) ^(1,3,4)	—	—	500	ps
tsκ2(ω)	Multiple Frequency Skew (Rise-Fall, Nomina	al-Divided, Divided-Divided) ^(1,3,4)	—	—	500	ps
tsk1(INV)	Inverting Skew (Nominal-Inverted) ^(1,3)		—	—	500	ps
tsk2(INV)	Inverting Skew (Rise-Rise, Fall-Fall, Rise-Fa	all, Inverted-Divided) $^{(1,3,4)}$	—	—	500	ps
tsk(pr)	Process Skew ^(1,3.5)		—	—	400	ps
t(φ)	REF Input to FB Static Phase Offset ⁽⁶⁾		-200	_	200	ps
todcv	Output Duty Cycle Variation from 50% ⁽⁷⁾	HSTL / eHSTL / 1.8V LVTTL	-475	—	475	ps
		2.5VLVTTL	-375	—	375	
torise	Output Rise Time ⁽⁸⁾	HSTL/eHSTL/1.8V LVTTL	—	_	1.2	ns
		2.5VLVTTL	—	—	1	
tofall	Output Fall Time ⁽⁸⁾	HSTL/eHSTL/1.8V LVTTL	—	_	1.2	ns
		2.5VLVTTL	—	—	1	
t.	Power-up PLL Lock Time ⁽⁹⁾		—	_	4	ms
t∟(ω)	PLL Lock Time After Input Frequency Chang	Je ⁽⁹⁾	—	_	1	ms
tL(REFSEL1)	PLL Lock Time After Change in REF_SEL	9,11)	—	_	100	μs
tL(REFSEL2)	PLL Lock Time After Change in REF_SEL (F	REF1 and REF0 are different frequency) ⁽⁹⁾	—	_	1	ms
tL(PD)	PLL Lock Time After Asserting PD Pin ⁽⁹⁾		_	_	1	ms
tлт(cc)	Cycle-to-Cycle Output Jitter (peak-to-peak) ⁽¹	0)	-	_	100	ps
tJIT(PER)	Period Jitter (peak-to-peak) ⁽¹⁰⁾		_	_	150	ps
tur(HP)	Half Period Jitter (peak-to-peak, QFB/QFB only) ^(10, 12)		—	_	200	ps
tjit(duty)	Duty Cycle Jitter (peak-to-peak) ⁽¹⁰⁾		- 1	_	150	ps
Vox	HSTL and eHSTL Differential True and Com QFB/QFB only ⁽¹²⁾	plementary Output Crossing Voltage Level	Vddqn/2 - 150	Vddqn/2	Vddqn/2 + 150	mV

NOTES:

1. Skew is the time between the earliest and latest output transition among all outputs when all outputs are loaded with the specified load.

2. tsk(B) is the skew between a pair of outputs (nQ0 and nQ1) when all outputs are selected as the same class.

3. The measurement is made at VDDQN/2.

- 4. There are three classes of outputs: nominal (zero delay), inverted, and divided (divide-by-2 or divide-by-4 mode).
- 5. tsk(PR) is the output to corresponding output skew between any two devices operating under the same conditions (VDD and VDDON, ambient temperature, air flow, etc.).
- 6. t(a) is measured with REF and FB the same type of input, the same rise and fall times. For 1.8V / 2.5V LVTTL input and output, the measurement is taken from VTH on REF
- to VTHI on FB. For HSTL / eHSTL input and output, the measurement is taken from the crosspoint of REF/REF to the crosspoint of FB/FB. All outputs are set to zero delay, FB input divider set to divide-by-one, and Bit 60 = 1.
- 7. topcv is measured with all outputs selected for zero delay.
- 8. Output rise and fall times are measured between 20% to 80% of the actual output voltage swing.
- tL, tL(ω), tL(REFSEL1), tL(REFSEL2), and tL(PD) are the times that are required before the synchronization is achieved. These specifications are valid only after VDD/VDDON is stable and within the normal operating limits. These parameters are measured from the application of a new signal at REF or FB, or after PD is (re)asserted until t(φ) is within specified limits.
- 10. The jitter parameters are measured with all outputs selected for zero delay, FB input divider is set to divide-by-one, and Bit 60 = 1.
- 11. Both REF inputs must be the same frequency, but up to ±180° out of phase.
- 12. For HSTL/eHSTL outputs only.

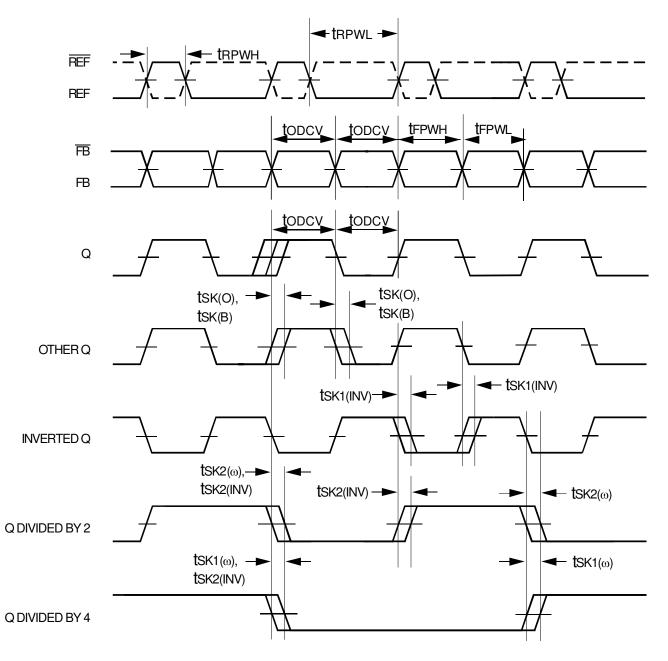
AC DIFFERENTIAL INPUT SPECIFICATIONS⁽¹⁾

Symbol	Parameter	Min.	Тур.	Max	Unit
tw	Reference/Feedback Input Clock Pulse Width HIGH or LOW (HSTL/eHSTL outputs) ⁽²⁾	1	_	_	ns
	Reference/Feedback Input Clock Pulse Width HIGH or LOW (2.5V / 1.8V LVTTL outputs) $^{(2)}$	1	_	_	
HSTL/eHSTL	/1.8V LVTTL/2.5V LVTTL				
VDIF	AC Differential Voltage ⁽³⁾	400	—	_	mV
Vін	AC Input HIGH ^(4,5)	Vx + 200	_	_	mV
VIL	AC Input LOW ^(4,6)	—	_	Vx - 200	mV
LVEPECL					
Vdif	AC Differential Voltage ⁽³⁾	400	_	_	mV
Vін	AC Input HIGH ⁽⁴⁾	1275	_	_	mV
VIL	AC Input LOW ⁽⁴⁾	—	_	875	mV
			•		

NOTES:

1. For differential input mode, Bits 35 - 30 = 1.

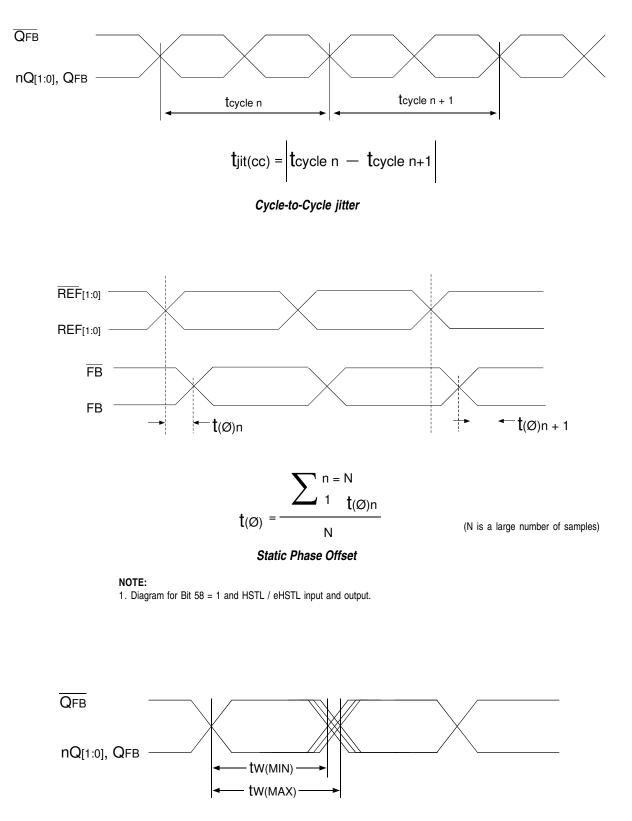
2. Both differential input signals should not be driven to the same level simultaneously. The input will not change state until the inputs have crossed and the voltage range defined by VDIF has been met or exceeded.


3. Differential mode only. VDIF specifies the minimum input voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. The AC differential voltage must be achieved to guarantee switching to a new state.

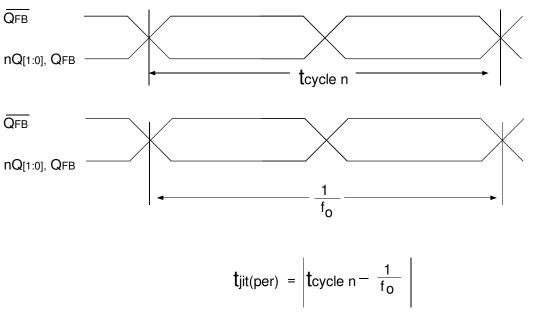
4. For single-ended operation, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0]. Refer to each input interface's DC specification for the correct VREF[1:0] range.

5. Voltage required to switch to a logic HIGH, single-ended operation only.

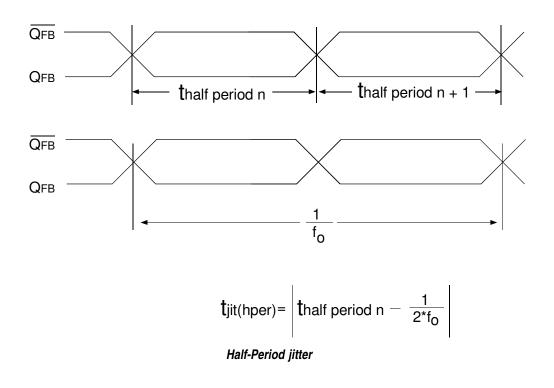
6. Voltage required to switch to a logic LOW, single-ended operation only.


AC TIMING DIAGRAM⁽¹⁾

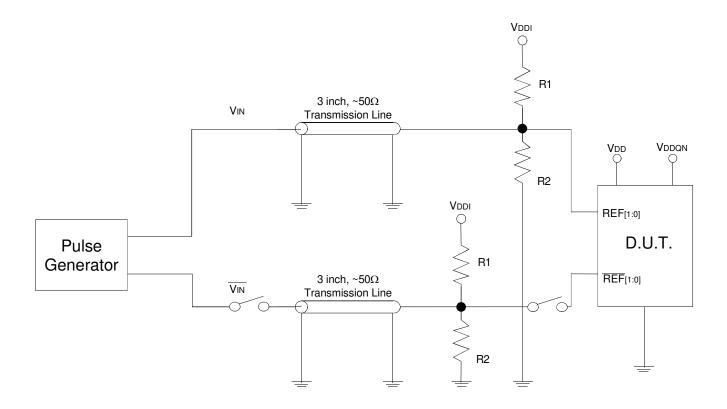
NOTE:


1. The AC TIMING DIAGRAM applies to Bit 58 = 1. For Bit 58 = 0, the negative edge of FB aligns with the negative edge of REF[1:0], divided outputs change on the negative edge of REF[1:0], and the positive edges of the divide-by-2 and divide-by-4 signals align.

JITTER AND OFFSET TIMING WAVEFORMS


 $t_{JIT(DUTY)} = t_{W(MAX)} - t_{W(MIN)}$

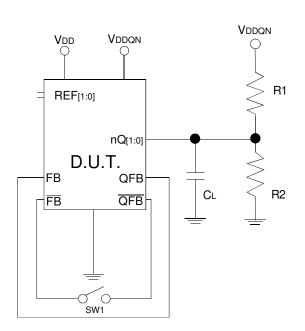
Duty-Cycle Jitter

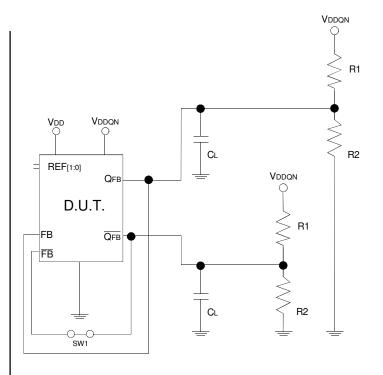

Period jitter

NOTE: 1. 1/fo = average period.

NOTE: 1. 1/fo = average period.

TEST CIRCUITS AND CONDITIONS


Test Circuit for Differential Input⁽¹⁾


DIFFERENTIAL INPUT TEST CONDITIONS

Symbol	$V_{DD} = 2.5V \pm 0.2V$	Unit
R1	100	Ω
R2	100	Ω
Vddi	Vсм*2	V
	HSTL: Crossing of REF[1:0] and REF[1:0] eHSTL: Crossing of REF[1:0] and REF[1:0]	
Vтні	LVEPECL: Crossing of REF[1:0] and REF[1:0] 1.8V LVTTL: VDDI/2 2.5V LVTTL: VDD/2	V

NOTE:

1. This input configuration is used for all input interfaces. For single-ended testing, the $\overline{\mathsf{REF}}_{[1:0]}$ must be left floating. For testing single-ended in differential input mode, the $\overline{\mathsf{Vin}}$ should be floating.

Test Circuit for Outputs

OUTPUT TEST CONDITIONS

Symbol	$V_{DD} = 2.5V \pm 0.2V$	Unit
	VDDQN = Interface Specified	
CL	15	pF
R1	100	Ω
R2	100	Ω
Vтно	VDDQN/2	V
SW1	1.8V/2.5V LVTTL	Open
	HSTL/eHSTL	Closed

Test Circuit for Differential Feedback

DIFFERENTIAL FEEDBACK TEST CONDITIONS

Symbol	$V_{DD} = 2.5V \pm 0.2V$	Unit
	VDDQN = Interface Specified	
CL	15	pF
R1	100	Ω
R2	100	Ω
Vox	HSTL: Crossing of QFB and $\overline{\text{QFB}}$	V
	eHSTL: Crossing of QFB and $\overline{\text{QFB}}$	
Vтно	1.8V LVTTL: VDDQN/2	V
	2.5V LVTTL: VDDQN/2	
SW1	1.8V/2.5V LVTTL	Open
	HSTL/eHSTL	Closed