imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

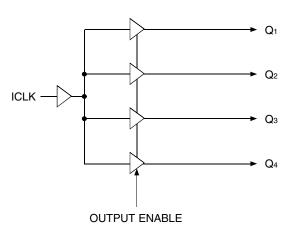
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

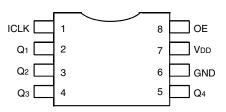
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1:4 CLOCK BUFFER


FEATURES:

- Advanced, low power CMOS process
- 5V tolerant inputs
- Low skew outputs (<250ps)
- Input/Output frequency up to 160MHz
- Non-inverting output clock
- Ideal for networking clocks
- Operating voltage of 3V
- Output enable mode tri-states outputs
- Lead-free packaging available
- Available in SOIC package

DESCRIPTION:


The 5V551 clock driver is built using advanced CMOS technology. This low skew clock driver offers 1:4 fanout. The fanout from a single input reduces loading on the preceding driver and provides an efficient clock distribution network. The 5V551 offers low capacitance inputs. Typical applications are clock and signal distribution.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

1

SOIC TOP VIEW

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

MARCH 2010

INDUSTRIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max.	Unit
Vdd	Supply Voltage	-0.5 to +4.6	V
VTERM	All Inputs	-0.5 to +7	V
	AllOutputs	-0.5 to VDD + 0.5	
TA	Ambient Operating Temp	-40 to +85	°C
TSTG	Storage Temperature	-65 to +150	°C
TJ	Junction Temperature	150	°C
TSOLDER	SolderingTemperature	260	°C

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Name	Туре	Description
ICLK	Input	Clock Input, internal pull-up resistor
Qn	Output	Clock Outputs
GND	PWR	Connect to Ground
Vdd	PWR	Connect to 3.3V
OE	Input	Output Enable. Tri-states outputs when LOW.
		Internal pull-up resistor.

EXTERNAL COMPONENTS

A minimum number of external components are required for proper operation. A decoupling capacitor of 0.01μ F should be connected between VDD on pin 7 and GND on pin 6, as close to the device as possible. A 33 Ω series terminating resistor may be used on each clock output if the trace is longer than one inch.

RECOMMENDED OPERATING RANGE

Symbol	Description	Min.	Тур.	Max.	Unit
TA	Ambient Operating Temperature	-40		+85	°C
Vdd	Power Supply Voltage (measured in respect to GND)	3	_	3.6	V

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD} = 3.3V \pm 5\%$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vdd	Operating Voltage		3.15	—	3.45	V
Vih	Input HIGH Voltage, ICLK ⁽¹⁾		VDD/2 + 0.7	_	—	V
Vil	Input LOW Voltage, ICLK ⁽¹⁾		—	_	VDD/2-0.7	V
Vih	Input HIGH Voltage, OE		2	_	—	V
Vil	Input LOW Voltage, OE		—	_	0.8	V
Vон	Output HIGH Voltage	Iон = –25mA	2.4	_	—	V
Vol	Output LOW Voltage	IOL = 25mA	—	_	0.4	V
Vон	Output HIGH Voltage (CMOS)	Iон = -12mA	Vdd - 0.4	_	—	V
IDD	Operating Supply Current	No Load, 135MHz	—	18	—	mA
Zo	Nominal Output Impedance		—	20	—	Ω
Rpu	Internal Pull-Up Resistor	ICLK, OEx = 0V	—	350	—	kΩ
CIN	Input Capacitance	OE Pin	—	5	—	pF
		ICLK	_	3	_	
los	Short Circuit Current		—	±90	—	mA

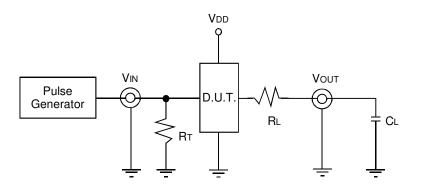
NOTE:

1. Nominal switching threshold is $V_{DD}/2$.

AC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified

 $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD} = 3.3V \pm 5\%$


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Fin	Input Frequency		0	-	160	MHz
Fout	Output Frequency ⁽¹⁾	15pFload	-		160	MHz
tOR	Output Clock Rise Time	0.8V to 2V	-	-	1.5	ns
toF	Output Clock Fall Time	2V to 0.8V	-		1.5	ns
tPD	Propagation Delay ⁽²⁾	135MHz	2	4	8	ns
tsĸ(o)	Output to Output Skew ⁽³⁾	Rising edges at VDD/2	-	-	250	ps

NOTES:

1. With external series resistor of 33Ω positioned close to each output pin.

- 2. With rail-to-rail input clock.
- 3. Between any two outputs with equal loading.
- 4. Duty cycle on outputs will match incoming clock duty cycle. Consult IDT for tight duty cycle clock generators.

TEST CIRCUIT

TEST CONDITIONS

Symbol	$V_{DD} = 3.3V \pm 5\%$	Unit
CL	15	pF
Rī	ZOUT of pulse generator	Ω
RL	33	Ω
tr/tr	1 (0V to 3V or 3V to 0V)	ns

DEFINITIONS:

 C_{L} = Load capacitance: includes jig and probe capacitance.

 R_T = Termination resistance: should be equal to the ZOUT of the pulse generator.

tR/tF = Rise/Fall time of the input stimulus from the pulse generator.

ORDERINGINFORMATION

Part Number	Shipping Package	Package	<u>Temperature</u>
5V551DCGI	Tubes	8SOIC	-40 to +85°C
5V551DCGI8	Tape and Reel	8SOIC	-40 to +85°C

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138

for SALES:

800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: clockhelp@idt.com