

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

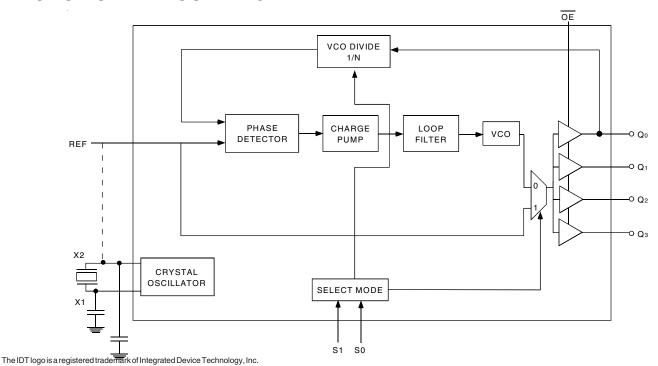
QUAD OUTPUT CLOCK GENERATOR

IDT5V927

FEATURES:

- 3V to 3.6V operating voltage
- 50MHz to 160MHz output frequency range
- · Input from fundamental crystal oscillator or external source
- Internal PLL feedback (loading feedback output relative to other outputs, adjusts propagation delay between REF inputs and outputs)
- Select inputs (S[1:0]) for FB divide selection (multiply ratio of 2, 3, 4, 4.25, 5, 6, 6.25, and 8)
- · Low jitter
- PLL bypass for testing and power-down control (S1 = H, S0 = H, powers part down <500μA)
- · Available in TSSOP package

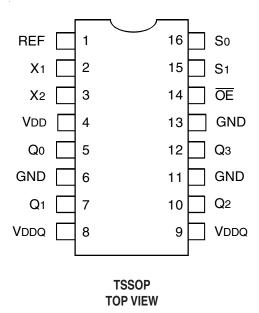
APPLICATIONS:


- · Gigabit ethernet
- Router
- · Network switches
- SAN
- Instrumentation
- Fibre channel

DESCRIPTION:

The IDT5V927 is a low-cost, low skew, low jitter, and high-performance clock synthesizer. It has been specially designed to interface with Gigabit Ethernet (125MHz), Fibre Channel (106.25MHz), and OC-3 (155.52MHz) applications. It can be programmed to provide output frequencies ranging from 50MHz to 160MHz, with input frequencies ranging from 6.25MHz to 80MHz.

The IDT5V927 includes an internal RC filter that provides excellent jitter characteristics and eliminates the need for external components. When using the optional crystal input, the chip accepts a 10 - 40MHz fundamental mode crystal with a maximum equivalent series resistance of 50Ω .


FUNCTIONAL BLOCK DIAGRAM

INDUSTRIAL TEMPERATURE RANGE

OCTOBER 2008

PIN CONFIGURATION

CRYSTAL SPECIFICATION

The crystal oscillators should be fundamental mode quartz crystals: overtone crystals are not suitable. Crystal frequency should be specified for parallel resonance with 50Ω maximum equivalent series resonance. Crystal tuning capacitors should be connected from X2/REF to GND and from X1 to GND.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max.	Unit
VDD/VDDQ	Supply Voltage to Ground	- 0.5 to +4.6	V
Vı	Input Voltage	- 0.5 to +4.6	V
lo	Output Current	±50	mA
Tstg	Storage Temperature	-65 to +150	°C
TJ	Junction Temperature	150	°C

NOTE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation
of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Name	Туре	Description
S[1:0]	Ι	Three level divider/mode select pins. Float to MID.
ŌĒ	I	Output enable bar. $\overline{\text{OE}}$ has a pull-down. Output Q[1:3] tristated when HIGH. Output Q0 remains running when in PLL mode and tri-states when in TEST mode.
X1	Ι	Crystaloscillatorinput.Connect toGNDifoscillatornotrequired.
X2	Ι	Crystal oscillator output. Leave unconnected for clock input.
REF	Ι	Input clock. Connect to X2 if crystal oscillator is used.
Q[1:3]	0	Output at N*REF frequency
Q0	0	Output at N*REF internally connected for PLL feedback
VDDQ	PWR	Power supply for the device outputs. Connect to VDD on PCB.
VDD	PWR	Power supply for the device core and inputs. Connect to VDD on PCB.
GND	PWR	Ground supply

DIVIDE SELECTION TABLE(1)

S1	S0	Divide-by-N Value	Mode
L	L	2	PLL
L	M	3	PLL
L	Н	4	PLL
М	L	4.25	PLL
М	М	5	PLL
M	Н	6	PLL
Н	L	6.25	PLL
Н	M	8	PLL
Н	Н	TEST	TEST ⁽²⁾

NOTES:

- 1. H = HIGH
 - M = MEDIUM I = I OW
- 2. Test mode for low frequency testing. In this mode, REF clock bypasses the VCO (VCO powered down) and the crystal oscillator is powered down.

COMMON OUTPUT FREQUENCY EXAMPLES (MHz)

Output	50	60	64	72	75	80	90	100
Input	25	10	16	12	25	10	15	20
FB Divide Selection S[1:0]	Щ	МН	LH	MH	LM	НМ	МН	MM

Output	106.25	106.25	120	125	125	125	150	155.52
Input	17	25	15	20	25	62.5	25	19.44
FB Divide Selection S[1:0]	HL	ML	НМ	HL	ММ	Ш	МН	НМ

OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD/VDDQ	Power Supply Voltage	3	3.3	3.6	V
TA	Operating Temperature	- 40	25	+85	°C
CL	Output Load Capacitance	_	-	15	pF
CIN	Input Capacitance, OE, F = 1MHz, VIN = 0V, TA = 25°C	_	5	7	pF

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: TA = -40°C to +85°C, VDD/VDDQ = 3.3V ± 0.3 V

Symbol	Parameter	Test Conditions		Min.	Тур.	Max	Unit
VIL	Input LOW Voltage			_	_	0.8	V
ViH	Input HIGH Voltage			2	_	_	V
Vihh	Input HIGH Voltage	3-level input only		VDD - 0.6	_	_	V
Vimm	Input MID Voltage	3-level input only		V _{DD} /2 - 0.3	_	$V_{DD}/2 + 0.3$	V
VILL	Input LOW Voltage	3-level input only			_	0.6	V
lin	Input Leakage Current (REF input only)	VIN = VDD or GND, VDD = Max.		-5	_	+5	μΑ
		VIN = VDD	HIGH Level	_	_	+200	
l3	3-Level Input DC Current, S[1:0]	VIN = VDD/2	MID Level	- 50	_	+50	μΑ
		VIN = GND	LOW Level	-200	_	_	
Іін	Input HIGH Current	VIN = VDD	ŌĒ	_	_	100	μΑ
		VIN = VDD, S[1:0] = HH	X1	_	2	4	mA
Vol	Output LOW Voltage	IoL = 12mA		_	_	0.4	V
Vон	Output HIGH Voltage	Iон = -12mA		2.4	_	_	V

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions (1)	Min.	Тур.	Max	Unit
IDD_PD	Power Down Current	VDD = Max.	_	_	500	μΑ
		S[1:0] = HH				
		\overline{OE} = L; REF = L; X ₁ = L				
		Alloutputs unloaded				
Δldd	Supply Current per Input	VDD = Max., VIN = 3V	_	_	30	μΑ
IDD	Dynamic Supply Current	VDD = 3.6V	_	_	130	mA
		S[1:0] = LL				
		$\overline{OE} = L$				
		FOUT = 150MHz				
		All outputs unloaded				

NOTE:

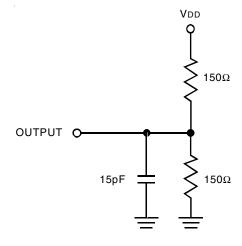
AC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
tR,tF	Rise Time, Fall Time	0.8V to 2V	0.8V to 2V		0.7	1.5	ns
dτ	Output/Duty Cycle	VT = VDDQ/2		45	50	55	%
	REF to Qo ⁽¹⁾	VT = VDDQ/2	fout ≥ 100MHz, all N	-200	_	200	ps
tPD			50 < fout < 160MHz, N ≤ 4	-200	_	200	
			50 < fout < 160MHz, N ≥ 4.25	-350	_	350	
tsk	Output to Output Skew (Q0 to Q1:3)	Equalloads	Equalloads		_	150	ps
tJ	Cycle - Cycle Jitter	fout ≥ 100MHz		-155	_	155	ps
four	Output Frequency			50	_	160	MHz

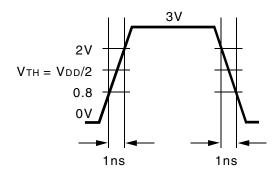
NOTE:

INPUT TIMING REQUIREMENTS

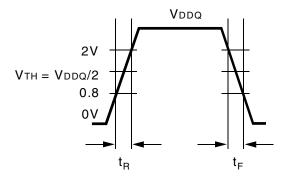
Symbol	Description ⁽¹⁾	Min.	Max.	Unit
tR,tF	Maximum input rise and fall time, 0.8V to 2V ⁽²⁾	_	10	ns/V
tPWC	Input clock pulse, HIGH or LOW ⁽²⁾	2	_	ns
Dн	Input duty cycle ⁽²⁾	10	90	%
fosc	XTALoscillatorfrequency	_	40	MHz
fiN	Inputfrequency ⁽²⁾	50/N	160/N	MHz


NOTES:

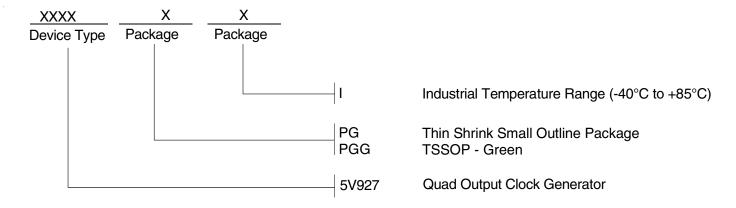
- 1. Where pulse width implied by $\ensuremath{\mathsf{DH}}$ is less than the tPWC limit, tPWC limit applies,
- 2. When using a clock input.


^{1.} For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.

^{1.} When using a clock input.


ACTEST LOADS AND WAVEFORMS

AC Test Load



Input Test Waveform

Output Waveform

ORDERING INFORMATION

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 40

800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: clockhelp@idt.com