imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

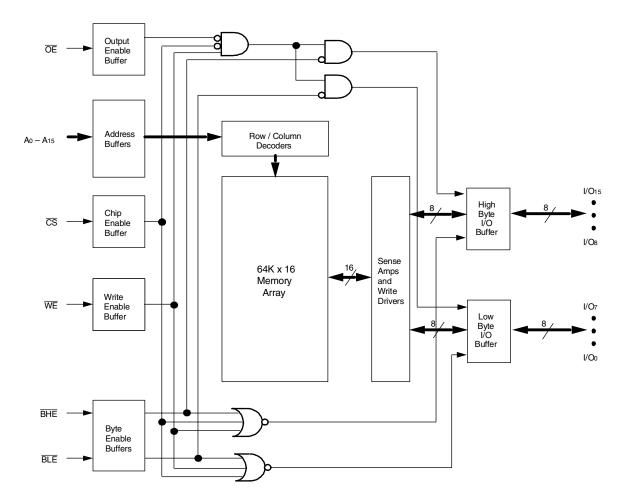
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V CMOS Static RAM 1 Meg (64K x 16-Bit)

IDT71V016SA/HSA

Features

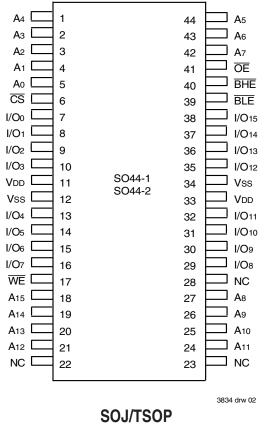
- 64K x 16 advanced high-speed CMOS Static RAM
- Equal access and cycle times
 Commercial: 10/12/15/20ns
 Industrial: 12/15/20ns
- One Chip Select plus one Output Enable pin
- Bidirectional data inputs and outputs directly LVTTL-compatible
- Low power consumption via chip deselect
- Upper and Lower Byte Enable Pins
- Single 3.3V power supply
- Available in 44-pin Plastic SOJ, 44-pin TSOP, and 48-Ball Plastic FBGA packages


Functional Block Diagram

Description

The IDT71V016 is a 1,048,576-bit high-speed Static RAM organized as 64K x 16. It is fabricated using IDT's high-perfomance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for high-speed memory needs.

The IDT71V016 has an output enable pin which operates as fast as 5ns, with address access times as fast as 10ns. All bidirectional inputs and outputs of the IDT71V016 are LVTTL-compatible and operation is from a single 3.3V supply. Fully static asynchronous circuitry is used, requiring no clocks or refresh for operation.


The IDT71V016 is packaged in a JEDEC standard 44-pin Plastic SOJ, a 44-pin TSOP Type II, and a 48-ball plastic 7 x 7 mm FBGA.

3834 drw 01

OCTOBER 2008

Pin Configurations

	1	2	3	4	5	6			
A	BLE	ŌĒ	Ao	Aı	A2	NC			
В	I/O8	BHE	Аз	A 4	ß	I/Oo			
С	I/O9	I/O10	A5	A6	I/O1	I/O2			
D	Vss	I/O11	NC	A 7	I/O3	Vdd			
E	Vdd	I/O12	NC	NC	I/O4	Vss			
F	I/O14	I/O13	A 14	A15	I/O5	I/O6			
G	I/O15	NC	A12	A13	WE	I/O7			
Η	NC	A8	A9	A 10	A11	NC			
	FBGA (BF48-1) 3834 tbl 02a								

FBGA (BF48-1) Top View

Top View

Truth Table⁽¹⁾

CS	ŌĒ	WE	BLE	BHE	I/O 0- I/O 7	I/O 8 -I/O 15	Function
Н	Х	Х	Х	Х	High-Z	High-Z	Deselected – Standby
L	L	Н	L	Н	DATAOUT	High-Z	Low Byte Read
L	L	Н	Н	L	High-Z	DATAOUT	High Byte Read
L	L	Н	L	L	DATAOUT	DATAOUT	Word Read
L	Х	L	L	L	DATAIN	DATAIN	Word Write
L	Х	L	L	Н	DATAIN	High-Z	Low Byte Write
L	Х	L	Н	L	High-Z	DATAIN	High Byte Write
L	Н	Н	Х	Х	High-Z	High-Z	Outputs Disabled
L	Х	Х	Н	Н	High-Z	High-Z	Outputs Disabled
				-			- 3834 tbl 02

NOTE:

1. $H = V_{IH}, L = V_{IL}, X = Don't care.$

IDT71V016SA, 3.3V CMOS Static RAM 1 Meg (64K x 16-Bit)

Commercial and Industrial Temperature Ranges

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Value	Unit
Vdd	Supply Voltage Relative to Vss	-0.5 to +4.6	V
Vin, Vout	Terminal Voltage Relative to Vss	-0.5 to VDD+0.5	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-55 to +125	۰C
Рт	Power Dissipation	1.25	W
Ιουτ	DC Output Current	50	mA
NOTE:			3834 tbl 03

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Capacitance

(TA = +25°C, f = 1.0MHz, SOJ package)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit		
CIN	Input Capacitance	VIN = 3dV	6	pF		
Cı/o	I/O Capacitance	Vout = 3dV	7	pF		
NOTE: 3834 tbl 06						

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

DC Electrical Characteristics

(VDD = Min. to Max., Commercial and Industrial Temperature Ranges)

			IDT71V016SA		
Symbol	Parameter	Test Condition	Min.	Max.	Unit
llul	Input Leakage Current	VDD = Max., VIN = Vss to VDD		5	μA
lllol	Output Leakage Current	$VDD = Max., \overline{CS} = VIH, VOUT = VSS to VDD$		5	μA
Vol	Output Low Voltage	IOL = 8mA, VDD = Min.		0.4	V
Vон	Output High Voltage	IOH = -4mA, $VDD = Min$.	2.4		V

3834 tbl 07

DC Electrical Characteristics^(1,2)

(VDD = Min. to Max., VLC = 0.2V, VHC = VDD - 0.2V)

			71V016SA10	71V01	6SA12	71V01	6SA15	71V01	6SA20	
Symbol	Parameter		Com'l Only	Com'l	Ind	Com'l	Ind	Com'l	Ind	Unit
	$\frac{Dynamic Operating Current}{\overline{CS} \le V_{LC}, Outputs Open, V_{DD} = Max., f = f_{MAX}^{(3)}$		160	150	160	130	130	120	120	mA
lcc			65	60		55		50		ma
lsв	Dynamic Standby Power Supply Current $\overline{CS} \ge$ VHc, Outputs Open, VDD = Max., f = fMAX ⁽³⁾		45	40	45	35	35	30	30	mA
ISB1	Full Standby Power Supply Current (static) $\overline{CS} \ge V_{HC}$, Outputs Open, VDD = Max., f = 0 ⁽³⁾		10	10	10	10	10	10	10	mA
NOTES: 3834 tbl 08										

1. All values are maximum guaranteed values.

2. All inputs switch between 0.2V (Low) and VDD - 0.2V (High).

3. $f_{MAX} = 1/t_{RC}$ (all address inputs are cycling at f_MAX); f = 0 means no address input lines are changing .

4. Typical values are based on characterization data for H step only measured at 3.3V, 25°C and with equal read and write cycles.

3

Recommended	Operating
Temperature a	nd Supply Voltage

Grade	Temperature	Vss	Vdd
Commercial	0°C to +70°C	0V	See Below
Industrial	-40°C to +85°C	0V	See Below

3834 tbl 04

3834 tbl 05

Recommended DC Operating Conditions

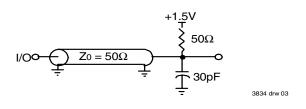
Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd ⁽¹⁾	Supply Voltage	3.15	3.3	3.6	۷
Vdd ⁽²⁾	Supply Voltage	3.0	3.3	3.6	۷
Vss	Ground	0	0	0	۷
Viн	Input High Voltage	2.0	-	$V \text{DD} {+} 0.3^{\scriptscriptstyle (3)}$	۷
VIL	Input Low Voltage	-0.3(4)		0.8	V

NOTES:

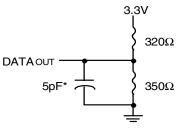
1. For 71V016SA10 only.

2. For all speed grades except 71V016SA10.

3. VIH (max.) = VDD+2V for pulse width less than 5ns, once per cycle.


4. V_{IL} (min.) = -2V for pulse width less than 5ns, once per cycle.

AC Test Conditions


Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	1.5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figure 1, 2 and 3

3834 tbl 09

AC Test Loads

3834 drw 04

*Including jig and scope capacitance.

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

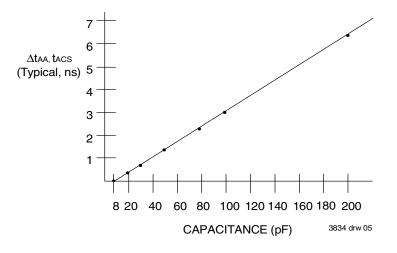
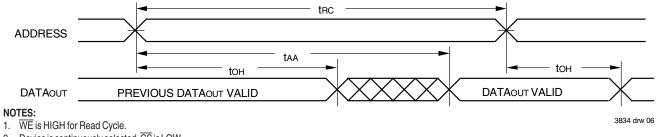


Figure 3. Output Capacitive Derating

3834 tbl 10

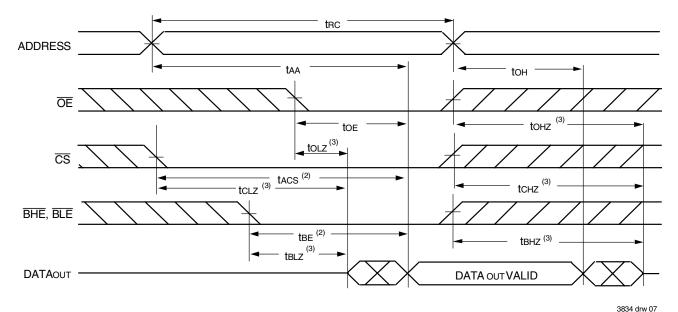
AC Electrical Characteristics (VDD = Min. to Max., Commercial and Industrial Temperature Ranges)


		71V016	6SA10 ⁽²⁾	71V016SA12		71V016SA15		5 71V016SA20		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCL	E		•		•		•		-	•
tRC	Read Cycle Time	10		12		15		20		ns
taa	Address Access Time	_	10		12		15		20	ns
tacs	Chip Select Access Time		10		12	_	15		20	ns
to_z ⁽¹⁾	Chip Select Low to Output in Low-Z	4		4		5		5		ns
tcHz ⁽¹⁾	Chip Select High to Output in High-Z		5		6		6	_	8	ns
tOE	Output Enable Low to Output Valid		5		6		7		8	ns
toLz ⁽¹⁾	Output Enable Low to Output in Low-Z	0		0		0		0	_	ns
toHz ⁽¹⁾	Output Enable High to Output in High-Z		5		6		6		8	ns
tон	Output Hold from Address Change	4	_	4	_	4	_	4	_	ns
tBE	Byte Enable Low to Output Valid	_	5	_	6	—	7		8	ns
tBLZ ⁽¹⁾	Byte Enable Low to Output in Low-Z	0		0		0		0	_	ns
tвнz ⁽¹⁾	Byte Enable High to Output in High-Z		5		6		6		8	ns
WRITE CYC	LE				•					
twc	Write Cycle Time	10		12		15		20		ns
taw	Address Valid to End of Write	7		8		10		12		ns
tcw	Chip Select Low to End of Write	7		8		10		12		ns
tBW	Byte Enable Low to End of Write	7		8		10		12		ns
tas	Address Set-up Time	0		0		0		0		ns
twr	Address Hold from End of Write	0		0		0		0		ns
twp	Write Pulse Width	7		8		10		12		ns
tDW	Data Valid to End of Write	5		6		7		9		ns
tDH	Data Hold Time	0		0		0		0	_	ns
tow ⁽¹⁾	Write Enable High to Output in Low-Z	3		3		3		3		ns
twнz ⁽¹⁾	Write Enable Low to Output in High-Z	_	5		6		6		8	ns

NOTES:

1. This parameter is guaranteed with the AC Load (Figure 2) by device characterization, but is not production tested.

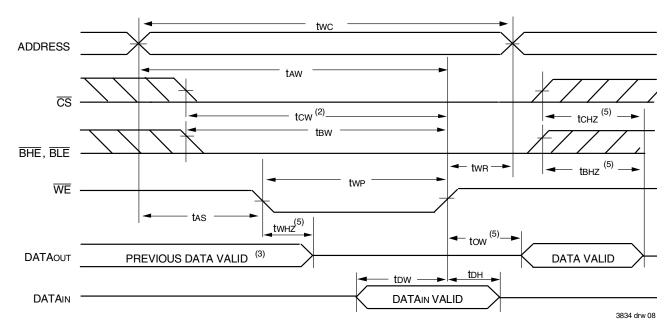
2. 0° C to +70° C temperature range only.


Timing Waveform of Read Cycle No. 1^(1,2,3)

2. Device is continuously selected, \overline{CS} is LOW.

3. OE, BHE, and BLE are LOW.

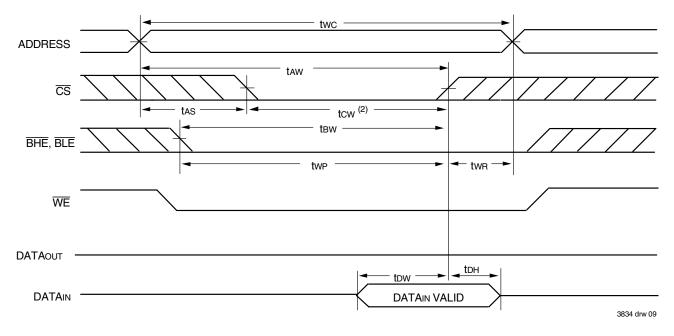
Timing Waveform of Read Cycle No. 2⁽¹⁾

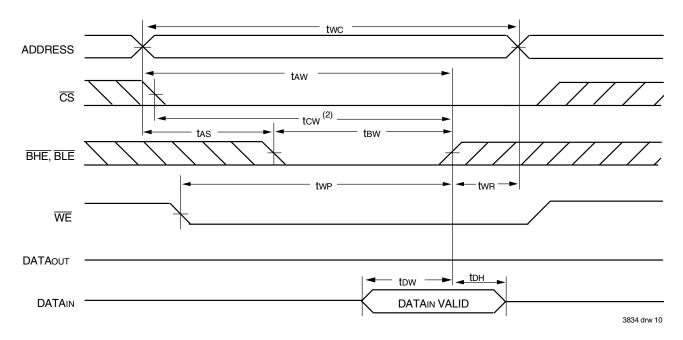

NOTES:

1. WE is HIGH for Read Cycle.

2. Address must be valid prior to or coincident with the later of CS, BHE, or BLE transition LOW; otherwise tAA is the limiting parameter.

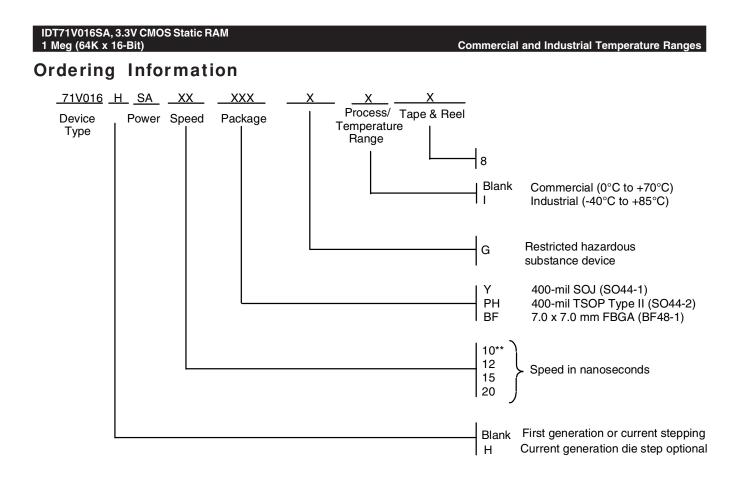
3. Transition is measured ±200mV from steady state.


Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)^(1,2,4)


NOTES:

- 1. A write occurs during the overlap of a LOW CS, LOW BHE or BLE, and a LOW WE.
- OE is continuously HIGH. If during a WE controlled write cycle OE is LOW, twp must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse is as short as the specified twp.
 During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the ČSLOW or BHE and BLE LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 5. Transition is measured ± 200 mV from steady state.

Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)^(1,4)



Timing Waveform of Write Cycle No. 3 (BHE, BLE Controlled Timing)^(1,4)

NOTES:

- 1. A write occurs during the overlap of a LOW \overline{CS} , LOW \overline{BHE} or \overline{BLE} , and a LOW \overline{WE} .
- OE is continuously HIGH. If during a WE controlled write cycle OE is LOW, twp must be greater than or equal to twHZ + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse is as short as the specified twp.
 During the provide the specified to the specifi
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the \overline{CS} LOW or \overline{BHE} and \overline{BLE} LOW transition occurs simultaneously with or after the \overline{WE} LOW transition, the outputs remain in a high-impedance state.
- 5. Transition is measured $\pm 200 \text{mV}$ from steady state.

** Commercial temperature range only. 3834 drw 11

Datasheet Document History

1/7/00		Updated to new format
	Pp. 1, 3, 5, 8	Added Industrial Temperature range offerings
	Pg. 2	Numbered I/Os and address pins on FBGA Top View
	Pg. 6	Revised footnotes on Write Cycle No. 1 diagram
	Pg. 7	Revised footnotes on Write Cycle No. 2 and No. 3 diagrams
	Pg. 9	Added Datasheet Document History
08/30/00	Pg. 3	Tighten ICC and ISB.
	Pg. 5	Tighten tCLZ, tCHZ, tOHZ, tBHZ and tWHZ
08/22/01	Pg. 8	Removed footnote "available in 15ns and 20ns only"
06/20/02	Pg. 8	Added tape and reel field to ordering information
01/30/04	Pg. 8	Added "Restricted hazardous substance device" to ordering information.
09/27/06	Pg. 8	Corrected ordering information, changed position of I and G.
02/14/07	Pg.8	Added H step generation to data sheet ordering information.
06/26/07	Pg.3	Changed typical parameters for ICC, DC electrical characteristics table.
10/13/08	Pg.8	Removed "IDT" from orderable part number

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138

for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: ipchelp@idt.com 800-345-7015

The IDT logo is a registered trademark of Integrated Device Technology, Inc.