: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Features

- $128 \mathrm{~K} \times 36,256 \mathrm{~K} \times 18$ memory configurations
- Supports high performance system speed - 200 MHz (3.2 ns Clock-to-Data Access)
- ZBT ${ }^{\text {TM }}$ Feature - No dead cycles between write and read cycles
- Internally synchronized output buffer enable eliminates the need to control $\overline{\mathrm{OE}}$
- Single R/ $\overline{\mathbf{W}}$ (READ/WRITE) control pin
- Positive clock-edge triggered address, data, and control signal registers for fully pipelined applications
- 4-word burst capability (interleaved or linear)
- Individual byte write (${\left.\overline{\mathrm{BW}} 11-\overline{B W}_{4}\right) \text { control (May tie active) }}^{-}$
- Three chip enables for simple depth expansion
- 3.3V power supply ($\pm 5 \%$), 2.5V I/O Supply (VdDQ)
- Optional - Boundary Scan JTAG Interface (IEEE 1149.1 complaint)
- Packaged in a JEDEC standard 100-pin plastic thin quad flatpack (TQFP), 119 ball grid array (BGA) and 165 fine pitch ball grid array (fBGA)

Description

The IDT71V2556/58 are 3.3 V high-speed 4,718,592-bit (4.5 Megabit) synchronous SRAMS. They are designedtoeliminate dead bus cycles when turning the bus around between reads and writes, or writes and reads. Thus, they have been given the name $\mathrm{ZBT}^{\text {TM }}$, or Zero Bus Turnaround.

Address and control signals are applied totheSRAM during one clock
cycle, and two cycles later the associated data cycle occurs, be it read or write.

The IDT71V2556/58 contain data I/O, address and control signal registers. Outputenable isthe only asynchronous signal and canbe used to disable the outputs at any given time.

A ClockEnable ($\overline{\mathrm{CEN}})$ pin allows operation of the IDT71V2556/58to be suspended as long as necessary. All synchronous inputs are ignored when $(\overline{\mathrm{CEN}})$ is high and the internal device registers will hold theirprevious values.

There are three chip enable pins ($\overline{\mathrm{CE}} 1, \mathrm{CE} 2, \overline{\mathrm{CE}}_{2}$) that allow the user to deselect the device when desired. If any one of these three are not asserted when ADV/LD islow, no new memory operation can be initiated. However, any pending datatransfers (reads orwrites) will be completed. The data bus will tri-state two cycles after chip is deselected or a write is initiated.

The IDT71V2556/58has anon-chipburstcounter. Intheburstmode, the IDT71V2556/58 can provide four cycles of data for a single address presented to the SRAM. The order ofthe burst sequence is defined by the $\overline{\mathrm{LBO}}$ input pin. The $\overline{\mathrm{LBO}}$ pin selects between linear and interleaved burst sequence. The ADV/LD signal is used to load a new external address $(A D V / \overline{\mathrm{LD}}=\mathrm{LOW})$ or increment the internal burst counter (ADV/ $\overline{\mathrm{LD}}=$ HIGH).

The IDT71V2556/58 SRAMs utilize IDT's latest high-performance CMOS process and are packaged ina JEDEC standard $14 \mathrm{~mm} \times 20 \mathrm{~mm}$ 100-pin thin plastic quad flatpack (TQFP) as well as a 119 ball grid array (BGA) and a 165 fine pitch ball grid array (fBGA).

Pin Description Summary

Ao-A17	Address Inputs	Input	Synchronous
$\overline{C o}_{1}{ }_{1} \mathrm{CE}_{2}, \overline{\mathrm{C}}_{2}$	Chip Enables	Input	Synchronous
$\overline{\mathrm{OE}}$	Output Enable	Input	Asynchronous
R/W	Read/Write Signal	Input	Synchronous
$\overline{C E N}$	Clock Enable	Input	Synchronous
$\overline{\mathrm{BW}}_{1}, \overline{\mathrm{BW}}_{2}, \overline{\mathrm{BW}}_{3}, \overline{\mathrm{BW}}_{4}$	Individual Byte Write Selects	Input	Synchronous
CLK	Clock	Input	N/A
ADV/İD	Advance burst address / Load new address	Input	Synchronous
$\overline{\mathrm{LBO}}$	Linear / Interleaved Burst Order	Input	Static
TMS	Test Mode Select	Input	Synchronous
TDI	Test Data Input	Input	Synchronous
TCK	Test Clock	Input	N/A
TDO	Test Data Output	Output	Synchronous
TRST	JTAG Reset (Optional)	Input	Asynchronous
ZZ	Sleep Mode	Input	Synchronous
I/O0-//O31, //Op1-//Op4	Data Input / Ouput	1/0	Synchronous
VDD, VdDQ	Core Power, I/O Power	Supply	Static
Vss	Ground	Supply	Static

Pin Definitions ${ }^{(1)}$

Symbol	Pin Function	I/0	Active	Description
A0-A17	Address Inputs	1	N/A	Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK, ADV/LD low, $\overline{C E N}$ low, and true chip enables.
ADV/ $\overline{L D}$	Advance / Load	1	N/A	ADV/ $\overline{L D}$ is a synchronous input that is used to load the internal registers with new address and control when it is sampled low at the rising edge of clock with the chip selected. When ADV/ $\overline{\mathrm{D}}$ is low with the chip deselected, any burst in progress is terminated. When ADV/LD is sampled high then the intermal burst counter is advanced for any burst that was in progress. The extemal addresses are ignored when ADV/LD is sampled high.
R / \bar{W}	Read / Write	1	N/A	$R \bar{W}$ signal is a synchronous input that identifies whether the current load cycle initiated is a Read or Write access to the memory array. The data bus activity for the current cycle takes place two clock cycles later.
$\overline{C E N}$	Clock Enable	1	LOW	Synchronous Clock Enable Input. When $\overline{\text { CEN }}$ is sampled high, all other synchronous inputs, including clock are ignored and outputs remain unchanged. The effect of CEN sampled high on the device outputs is as if the low to high clock transition did not occur. For normal operation, CEN must be sampled low at rising edge of clock.
$\overline{\mathrm{BW}} 1-\overline{\mathrm{BW}}_{4}$	Individual Byte Write Enables	1	LOW	Synchronous byte write enables. Each 9-bit byte has its own active low byte write enable. On load write cycles (When R / \bar{W} and $A D V / \overline{\mathrm{LD}}$ are sampled low) the appropriate byte write signal $(\overline{\mathrm{BW}} 1-\overline{\mathrm{BW}} 4)$ must be valid. The byte write signal must also be valid on each cycle of a burst write. Byte Write signals are ignored when $\mathrm{R} \overline{\mathrm{W}}$ is sampled high. The appropriate byte(s) of data are written into the device two cycles later. $\overline{\mathrm{BW}}_{1}-\overline{B W}_{4}$ can all be tied low if always doing write to the entire 36 -bit word.
$\overline{\mathrm{CE}} \mathrm{I}_{1} \overline{\mathrm{C}} \mathrm{E}_{2}$	Chip Enables	1	LOW	Synchronous active low chip enable. $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{C}}_{2}$ are used with CE_{2} to enable the IDT71V2556/58. ($\overline{\mathrm{CE}} 1$ or $\overline{\mathrm{C}} 2$ sampled high or CE_{2} sampled low) and ADV/ $\overline{\mathrm{LD}}$ low at the rising edge of clock, initiates a deselect cycle. The ZBTM has a two cycle deselect, i.e., the data bus will tri-state two clock cycles atter deselect is initiated.
CE2	Chip Enable	1	HIGH	Synchronous active high chip enable. CE_{2} is used with $\overline{\mathrm{C}} \overline{\mathrm{E}}_{1}$ and $\overline{\mathrm{C}} \mathrm{E}_{2}$ to enable the chip. CE 2 has inverted polarity but otherwise identical to $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{C}} \overline{\mathrm{E}}_{2}$.
CLK	Clock	1	N/A	This is the clock input to the IDT71V2556/58. Except for $\overline{\mathrm{OE}}$, all timing references for the device are made with respect to the rising edge of CLK.
$\begin{gathered} \text { //Oo-//O31 } \\ \text { I/Opt-I/Op4 } \end{gathered}$	Data Input/Output	VO	N/A	Synchronous data input/output (/O) pins. Both the data input path and data output path are registered and triggered by the rising edge of CLK.
$\overline{\text { LBO }}$	Linear Burst Order	1	LOW	Burst order selection input. When $\overline{\mathrm{LBO}}$ is high the Interleaved burst sequence is selected. When $\overline{\mathrm{LBO}}$ is low the Linear burst sequence is selected. $\overline{\mathrm{BO}}$ is a static input and it must not change during device operation.
$\overline{\mathrm{OE}}$	Output Enable	1	LOW	Asynchronous output enable. $\overline{O E}$ must be low to read data from the $71 \mathrm{~V} 2556 / 58$. When $\overline{\mathrm{OE}}$ is high the VO pins are in a high-impedance state. $\overline{\mathrm{OE}}$ does not need to be actively controlled for read and write cycles. In normal operation, $\overline{\mathrm{OE}}$ can be tied low.
TMS	Test Mode Select	1	N/A	Gives input command for TAP controller. Sampled on rising edge of TDK. This pin has an internal pullup.
TDI	Test Data Input	1	N/A	Serial input of registers placed between TDI and TDO. Sampled on rising edge of TCK. This pin has an intemal pullup.
TCK	Test Clock	1	N/A	Clock input of TAP controller. Each TAP event is clocked. Test inputs are captured on rising edge of TCK, while test outputs are driven from the falling edge of TCK. This pin has an internal pullup.
TDO	Test Data Output	0	N/A	Serial output of registers placed between TDI and TDO. This output is active depending on the state of the TAP controller.
TRST	JTAG Reset (Optional)	1	LOW	Optional Asynchronous JTAG reset. Can be used to reset the TAP controller, but not required. JTAG reset occurs automatically at power up and also resets using TMS and TCK per IEEE 1149.1. If not used TRST can be left floating. This pin has an internal pullup.
ZZ	Sleep Mode	1	HIGH	Synchronous sleep mode input. ZZ HIGH will gate the CLK internally and power down the IDT71V2556/2558 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode. This pin has an internal pulldown
VdD	Power Supply	N/A	N/A	3.3 V core power supply.
VDDQ	Power Supply	N/A	N/A	2.5V I/O Supply.
Vss	Ground	N/A	NA	Ground.

NOTE:

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Functional Block Diagram

Functional Block Diagram

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Typ.	Max	Unit
VDD	Core Supply Voltage	3.135	3.3	3.465	V
VdDQ	I/O Supply Voltage	2.375	2.5	2.625	V
Vss	Supply Voltage	0	0	0	V
V/H	Input High Voltage - Inputs	1.7	-	VDD +0.3	V
V/H	Input High Voltage - //O	1.7	-	VdDQ +0.3 ${ }^{(2)}$	V
VIL	Input Low Voltage	$-0.3{ }^{(1)}$	-	0.7	V

NOTES:

1. VIL (min.) $=-1.0 \mathrm{~V}$ for pulse width less than tcyc/2, once per cycle.
2. VIH (max.) $=+6.0 \mathrm{~V}$ for pulse width less than $\mathrm{tcyc} / 2$, once per cycle.

Recommended Operating Temperature and Supply Voltage

Grade	Temperature $^{(1)}$	Vss	VDD	VDDQ
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 5 \%$	$2.5 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 5 \%$	$2.5 \mathrm{~V} \pm 5 \%$

NOTES:

1. TA is the "instant on" case temperature.

Pin Configuration - $128 \mathrm{~K} \times 36$

NOTES:

1. Pins 14,16 and 66 do not have to be connected directly to V_{DD} as long as the input voltage is $\geq \mathrm{V}_{\mathrm{IH}}$.
2. Pins 83 and 84 are reserved for future 8 M and 16 M respectively.
3. Pin 64 does not have to be connected directly to Vss as long as the input voltage is \leq VIL; on the latest die revision this pin supports ZZ (sleep mode).

Pin Configuration - 256K x 18

Top View TQFP

NOTES:

1. Pins 14,16 and 66 do not have to be connected directly to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
2. Pins 83 and 84 are reserved for future 8 M and 16 M respectively.
3. Pin 64 does not have to be connected directly to Vss as long as the input voltage is \leq VIL; on the latest die revision this pin supports ZZ (sleep mode).

100 TQFP Capacitance ${ }^{(1)}$
 $\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Max	Unit
CIN	Input Capacitance	$\mathrm{VIN}=$ 3dV	5	pF
CVo	I/O Capacitance	Vout $=$ 3dV	7	pF

165 fBGA Capacitance ${ }^{(1)}$
$\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	TBD	pF
C / o	I/O Capacitance	Vout $=3 \mathrm{dV}$	TBD	pF

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	 Industrial Values	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM $^{(3,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD	V
VTERM $^{(4,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD +0.5	V
VTERM $^{(5,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	V
TA ${ }^{(7)}$	Commerical Operating Temperature	-0 to +70	${ }^{\circ} \mathrm{C}$
	Industrial Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
TBIAS	Temperature Under Bias	-55 to +125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
PT	Power Dissipation	2.0	W
loUt	DC Output Current	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VDD terminals only.
3. VDDQ terminals only.
4. Input terminals only.
5. I / O terminals only.
6. This is a steady-state DC parameter that applies after the power supply has reached its nominal operating value. Power sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up.
7. TA_{A} is the "instant on" case temperature.

119 BGA Capacitance ${ }^{(1)}$
($\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{V}_{\mathrm{N}}=3 \mathrm{dV}$	7	pF
CIo	VO Capacitance	Vout $=3 \mathrm{dV}$	7	pF

Pin Configuration - 128K x 36, 119 BGA

Pin Configuration $-256 \mathrm{~K} \times 18,119 \mathrm{BGA}$

Top View
NOTES:

1. J 3, J 5 , and R 5 do not have to be directly connected to VDD as long as the input voltage is $\geq \mathrm{V}_{1} \mathrm{H}$.
2. G4 and A4 are reserved for future 8 M and 16 M respectively.
3. These pins are NC for the "S" version and the JTAG signal listed for the "SA" version.
4. TRST is offered as an optional JTAG reset if required in the application. If not needed, can be left floating and will internally be pulled to Vod.
5. Pin T 7 supports ZZ (sleep mode) on the latest die revision.

Pin Configuration - 128K x 36, 165 fBGA

A	NC ${ }^{(2)}$	A7	$\overline{\mathrm{CE}} 1$	$\overline{\mathrm{BW}} 3$	$\overline{\mathrm{B}} \mathrm{W}_{2}$	$\overline{\mathrm{C}} \mathrm{E}_{2}$	$\overline{C E N}$	ADV/ $\overline{L D}$	NC ${ }^{(2)}$	A8	NC
B	NC	A6	CE2	$\overline{\mathrm{BW}} 4$	$\overline{\mathrm{BW}} 1_{1}$	CLK	R/W	$\overline{\mathrm{OE}}$	$N C^{(2)}$	A9	NC ${ }^{(2)}$
C	//OP3	NC	VDDQ	Vss	VSS	Vss	Vss	Vss	VDDQ	NC	//Op2
D	I/O17	//O16	VDDQ	VDD	VSS	Vss	Vss	VDD	VDDQ	I/O15	//014
E	//O19	//O18	VDDQ	VDD	VSS	Vss	Vss	VDD	VDDQ	I/O13	//012
F	I/O21	I/O20	VDDQ	VDD	Vss	VSS	Vss	VDD	VDDQ	//O11	//010
G	//O23	I/O22	VDDQ	VDD	Vss	VSS	Vss	VDD	VDDQ	//09	//08
H	VDD ${ }^{(1)}$	VDD ${ }^{(1)}$	NC	VDD	Vss	VSS	Vss	VDD	NC	NC	NC/ Z $^{(5)}$
J	I/O25	I/O24	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	//07	//06
K	I/O27	I/O26	VDDQ	VDD	Vss	VSs	Vss	VDD	VDDQ	//O5	I/O4
L	I/O29	I/O28	VDDQ	VDD	Vss	VSS	Vss	VDD	VDDQ	I/O3	//O2
M	I/O31	I/O30	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	//01	1/00
N	//Op4	NC	VDDQ	VSS	$\mathrm{NC} / \overline{\mathrm{TRST}}{ }^{(3,4)}$	NC	VDD ${ }^{(1)}$	VSS	VDDQ	NC	//OP1
P	NC	NC ${ }^{(2)}$	A5	A2	NC/TDI ${ }^{(3)}$	A1	NC/TDO ${ }^{(3)}$	A10	A13	A14	NC
R	$\overline{\mathrm{LBO}}$	NC ${ }^{(2)}$	A4	A3	NC/TMS ${ }^{(3)}$	A0	NC/TCK ${ }^{(3)}$	A11	A12	A15	A16

Pin Configuration - 256K x 18, 165 fBGA

	1	2	3	4	5	6	7	8	9	10	11
A	NC ${ }^{(2)}$	A7	$\overline{\mathrm{C}} \overline{1}_{1}$	$\overline{\mathrm{BW}} 2$	NC	$\overline{\mathrm{CE}} 2$	$\overline{C E N}$	ADV/̄/D	$N C^{(2)}$	A8	A10
B	NC	A6	CE2	NC	$\overline{\mathrm{B}} \mathrm{W}_{1}$	CLK	R / \bar{W}	$\overline{\mathrm{OE}}$	$N C^{(2)}$	A9	$N C^{(2)}$
C	NC	NC	VDDQ	Vss	VSS	VSS	VSS	VSS	VDDQ	NC	I/OP1
D	NC	1/08	VDDQ	VDD	Vss	Vss	VSS	VDD	VDDQ	NC	//07
E	NC	//O9	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	NC	1/06
F	NC	//O10	VDDQ	VDD	VSS	Vss	VSS	VDD	VDDQ	NC	//O5
G	NC	//O11	VDDQ	VDD	Vss	Vss	VSS	VDD	VDDQ	NC	//O4
H	VDD ${ }^{(1)}$	VDD ${ }^{(1)}$	NC	VDD	VSS	Vss	VSS	VDD	NC	NC	NC/ZZ ${ }^{5}$
J	//O12	NC	VDDQ	VDD	Vss	VSS	Vss	VDD	VDDQ	1/O3	NC
K	1/013	NC	VDDQ	VDD	Vss	VSs	Vss	VDD	VDDQ	I/O2	NC
L	//O14	NC	VDDQ	VDD	VSS	VSs	VSS	VDD	VDDQ	I/O1	NC
M	//O15	NC	VDDQ	VDD	Vss	VSS	Vss	VDD	VDDQ	1/00	NC
N	1/OP2	NC	VDDQ	Vss	$\mathrm{NC} / \overline{\mathrm{TRST}}{ }^{(3,4)}$	NC	VDD ${ }^{(1)}$	VSS	VDDQ	NC	NC
P	NC	NC ${ }^{(2)}$	A5	A2	NC/TD(${ }^{(3)}$	A1	NC/TDO ${ }^{(3)}$	A11	A14	A15	NC
R	$\overline{\text { LBO }}$	$N C^{(2)}$	A4	A3	NC/TMS ${ }^{(3)}$	A0	NC/TCK ${ }^{(3)}$	A12	A13	A16	A17

4875 tol 25a

NOTES:

1. $\mathrm{H} 1, \mathrm{H} 2$, and N 7 do not have to be directly connected to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
2. A9, B9, B11, A1, R2 and P2 are reserved for future $9 \mathrm{M}, 18 \mathrm{M}, 36 \mathrm{M}, 72 \mathrm{M}, 144 \mathrm{M}$, and 288 M respectively respectively.
3. These pins are NC for the "S" version and the JTAG signal listed for the "SA" version.
4. TRST is offered as an optional JTAG reset if required in the application. If not needed, can be left floating and will internally be pulled to VdD.
5. Pin H11 supports ZZ (sleep mode) on the latest die revision.

IDT71V2556, IDT71V2558, 128K x 36, 256K x 18, 3.3V Synchronous ZBT™ SRAMs
with 2.5V I/O, Burst Counter, and Pipelined Outputs

Synchronous Truth Table ${ }^{(1)}$

$\overline{C E N}$	R/W	Chip ${ }^{(5)}$ Enable	ADV/̄̄D	$\overline{\mathrm{BW}} \mathrm{x}$	ADDRESS USED	PREVIOUS CYCLE	CURRENT CYCLE	$\begin{gathered} I / O \\ (2 \text { cycles later) } \end{gathered}$
L	L	Select	L	Valid	External	X	LOAD WRITE	$D^{(7)}$
L	H	Select	L	X	External	X	LOAD READ	$Q^{(7)}$
L	X	X	H	Valid	Internal	LOAD WRITE / BURST WRITE	BURST WRITE (Advance burst counter) ${ }^{(2)}$	$D^{(7)}$
L	X	X	H	X	Internal	LOAD READ / BURST READ	BURST READ (Advance burst counter) ${ }^{(2)}$	$Q^{(7)}$
L	X	Deselect	L	X	X	X	DESELECT or STOP ${ }^{(3)}$	HiZ
L	X	X	H	X	X	DESELECT / NOOP	NOOP	HiZ
H	X	X	X	X	X	X	SUSPEND ${ }^{(4)}$	Previous Value

NOTES:

1. $L=V_{I L}, H=V I H, X=$ Don't Care.
2. When $A D V / \overline{L D}$ signal is sampled high, the internal burst counter is incremented. The R / \bar{W} signal is ignored when the counter is advanced. Therefore the nature of the burst cycle (Read or Write) is determined by the status of the $\mathrm{R} / \overline{\mathrm{W}}$ signal when the first address is loaded at the beginning of the burst cycle.
3. Deselect cycle is initiated when either ($\overline{C E}_{1}$, or $\overline{\mathrm{CE}}_{2}$ is sampled high or CE_{2} is sampled low) and $\mathrm{ADV} / \overline{\mathrm{LD}}$ is sampled low at rising edge of clock. The data bus will tri-state two cycles after deselect is initiated.
4. When $\overline{\mathrm{CEN}}$ is sampled high at the rising edge of clock, that clock edge is blocked from propogating through the part. The state of all the internal registers and the I/ Os remains unchanged.
5. To select the chip requires $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}, \mathrm{CE} 2=\mathrm{H}$ on these chip enables. Chip is deselected if any one of the chip enables is false.
6. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.
7. Q - Data read from the device, D - data written to the device.

Partial Truth Table for Writes ${ }^{(1)}$

OPERATION	R / \bar{W}	$\overline{\mathrm{BW}} 1$	$\overline{\mathrm{BW}}_{2}$	$\overline{\mathrm{BW}}_{3}{ }^{(3)}$	$\overline{\mathrm{BW}} 4^{(3)}$
READ	H	X	X	X	X
WRITE ALL BYTES	L	L	L	L	L
WRITE BYTE 1 (//O[0:7], //Opi) ${ }^{(2)}$	L	L	H	H	H
WRITE BYTE 2 (//O[8:15], //Op2) ${ }^{(2)}$	L	H	L	H	H
WRITE BYTE 3 (//O[16:23], //Op3) ${ }^{(2,3)}$	L	H	H	L	H
WRITE BYTE 4 (//O[24:31], //Op4) ${ }^{(2,3)}$	L	H	H	H	L
NO WRITE	L	H	H	H	H

NOTES:

1. $L=V I L, H=V I H, X=$ Don't Care.
2. Multiple bytes may be selected during the same cycle.
3. N/A for X18 configuration.

IDT71V2556, IDT71V2558, 128K x 36, 256K x 18, 3.3V Synchronous ZBT ${ }^{\text {TM }}$ SRAMs
with 2.5 V IIO, Burst Counter, and Pipelined Outputs
Interleaved Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{VDD}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	1	0	0	1	0	0

NOTE:
4875 tbl 10

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Linear Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{vss}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	0	0	0	1	1	0

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Functional Timing Diagram ${ }^{(1)}$

CYCLE	n+29	n+30	$\mathrm{n}+31$	n+32	$\mathrm{n}+33$	n+34	n+35	$\mathrm{n}+36$	n+37
CLOCK	4	4	4	4	4	4	4	4	
$\begin{gathered} \text { ADDRESS }{ }^{(2)} \\ (\text { A0 - A16) } \end{gathered}$	A29	A30	A31	A32	A33	A34	A35	A36	A37
$\frac{\text { CONTROL }^{(2)}}{(\mathrm{R} / \overline{\mathrm{W}}, \mathrm{ADV} / \overline{\mathrm{LD}}, \overline{\mathrm{BW}} \mathrm{x})}$	C29	C30	C31	C32	C33	C34	C35	C36	C37
$\begin{gathered} \text { DATA }^{(2)} \\ \mathrm{I} / \mathrm{O}[0: 31], \mathrm{I} / \mathrm{O} \mathrm{P[1:4]} \end{gathered}$	D/Q27	D/Q28	D/Q29	D/Q30	D/Q31	D/Q32	D/Q33	D/Q34	D/Q35

NOTES:

1. This assumes $\overline{\mathrm{CEN}}, \overline{\mathrm{CE}} 1, \mathrm{CE} 2, \overline{\mathrm{CE}} 2$ are all true.
2. All Address, Control and Data_In are only required to meet set-up and hold time with respect to the rising edge of clock. Data_Out is valid after a clock-to-data delay from the rising edge of clock.

Device Operation - Show int Mixed Load, Burst, Deselect and NOOP Cycles ${ }^{(2)}$

Cycle	Address	R / \bar{W}	ADV/LD	$\overline{\mathrm{C}} \overline{\mathrm{E}}^{(1)}$	CEN	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	I/O	Comments
n	A0	H	L	L	L	X	X	X	Load read
n+1	X	X	H	X	L	X	X	X	Burst read
n+2	A1	H	L	L	L	X	L	Qo	Load read
n+3	X	X	L	H	L	X	L	Q0+1	Deselect or STOP
n+4	X	X	H	X	L	X	L	Q1	NOOP
n+5	A2	H	L	L	L	X	X	Z	Load read
n+6	X	X	H	X	L	X	X	Z	Burst read
n+7	X	X	L	H	L	X	L	Q2	Deselect or STOP
n+8	A3	L	L	L	L	L	L	Q2+1	Load write
n+9	X	X	H	X	L	L	X	Z	Burst write
n+10	A4	L	L	L	L	L	X	D3	Load write
n+11	X	X	L	H	L	X	X	D3+1	Deselect or STOP
n+12	X	X	H	X	L	X	X	D4	NOOP
n+13	A5	L	L	L	L	L	X	Z	Load write
n+14	A6	H	L	L	L	X	X	Z	Load read
n+15	A7	L	L	L	L	L	X	D5	Load write
n+16	X	X	H	X	L	L	L	Q6	Burst write
n+17	A8	H	L	L	L	X	X	D7	Load read
n+18	X	X	H	X	L	X	X	D7+1	Burst read
n+19	A9	L	L	L	L	L	L	Q8	Load write

NOTES:

1. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.
2. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.

Read Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	ADV/ $\overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}^{2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / 0$	Comments
n	A 0	H	L	L	L	X	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	L	X	X	X	Clock Setup Valid
$\mathrm{n}+2$	X	X	X	X	X	X	L	Q	Contents of Address Ao Read Out

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=L, \overline{\mathrm{CE}}_{2}=L$ and $C E_{2}=H . \overline{\mathrm{CE}}=H$ is defined as $\overline{\mathrm{CE}}_{1}=H, \overline{\mathrm{CE}}_{2}=H$ or $C E 2=L$.

IDT71V2556, IDT71V2558, 128K x 36, 256K x 18, 3.3V Synchronous ZBTTM SRAMs
with 2.5 V I/O, Burst Counter, and Pipelined Outputs

Burst Read Operation ${ }^{(1)}$

Cycle	Address	R/W	ADV/ $\overline{L D}$	$\overline{\mathrm{C}} \bar{E}^{(2)}$	$\overline{\text { CEN }}$	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{\mathrm{OE}}$	I/O	Comments
n	A0	H	L	L	L	X	X	X	Address and Control meet setup
$n+1$	X	X	H	X	L	X	X	X	Clock Setup Valid, Advance Counter
$\mathrm{n}+2$	X	X	H	X	L	X	L	Q0	Address Ao Read Out, Inc. Count
n+3	X	X	H	X	L	X	L	Q0+1	Address A0+1 Read Out, Inc. Count
$\mathrm{n}+4$	X	X	H	X	L	X	L	Q0+2	Address A0+2 Read Out, Inc. Count
$n+5$	A1	H	L	L	L	X	L	Q0+3	Address $\mathrm{A}_{0}+3$ Read Out, Load A_{1}
n+6	X	X	H	X	L	X	L	Q0	Address Ao Read Out, Inc. Count
$\mathrm{n}+7$	X	X	H	X	L	X	L	Q1	Address A1 Read Out, Inc. Count
$n+8$	A2	H	L	L	L	X	L	Q1+1	Address A1+1 Read Out, Load A2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

Write Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{ADV} / \overline{\mathrm{D}}$	$\overline{\mathrm{CE}}^{2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / 0$	Comments
n	A_{0}	L	L	L	L	L	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	L	X	X	X	Clock Setup Valid
$\mathrm{n}+2$	X	X	X	X	L	X	X	D 0	Write to Address A_{0}

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=L$ is defined as $\overline{\mathrm{CE}}_{1}=L, \overline{\mathrm{CE}}_{2}=L$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

Burst Write Operation ${ }^{(1)}$

Cycle	Address	R/W	ADV/LD	$\overline{\mathrm{CE}}{ }^{21}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	1/0	Comments
n	A0	L	L	L	L	L	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	H	X	L	L	X	X	Clock Setup Valid, Inc. Count
n+2	X	X	H	X	L	L	X	Do	Address Ao Write, Inc. Count
n+3	X	X	H	X	L	L	X	D0+1	Address A0+1 Write, Inc. Count
n+4	X	X	H	X	L	L	X	Do+2	Address Ao+2 Write, Inc. Count
n+5	A1	L	L	L	L	L	X	D0+3	Address A0+3 Write, Load A1
n+6	X	X	H	X	L	L	X	Do	Address Ao Write, Inc. Count
$\mathrm{n}+7$	X	X	H	X	L	L	X	D1	Address A1 Write, Inc. Count
n+8	A2	L	L	L	L	L	X	D1+1	Address A1+1 Write, Load A2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? $=$ Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H}$. $\overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $C E_{2}=\mathrm{L}$.

IDT71V2556, IDT71V2558, 128K x 36, 256K x 18, 3.3V Synchronous ZBT ${ }^{\text {TM }}$ SRAMs
with 2.5V I/O, Burst Counter, and Pipelined Outputs
Read Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	ADV/ $\overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}^{2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / 0$	Comments
n	A_{0}	H	L	L	L	X	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	H	X	X	X	Clock $n+1$ lgnored
$\mathrm{n}+2$	$\mathrm{~A}_{1}$	H	L	L	L	X	X	X	Clock Valid
$\mathrm{n}+3$	X	X	X	X	H	X	L	Q_{0}	Clock lgnored. Data Q_{0} is on the bus.
$\mathrm{n}+4$	X	X	X	X	H	X	L	Q_{0}	Clock lgnored. Data Qo is on the bus.
$\mathrm{n}+5$	$\mathrm{~A}_{2}$	H	L	L	L	X	L	Q_{0}	Address A0 Read out (bus trans.)
$\mathrm{n}+6$	$\mathrm{~A}_{3}$	H	L	L	L	X	L	Q_{1}	Address A1 Read out (bus trans.)
$\mathrm{n}+7$	$\mathrm{~A}_{4}$	H	L	L	L	X	L	Q_{2}	Address A2 Read out (bus trans.)

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{C E}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

Write Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	R/ \bar{W}	ADV/L̄D	$\overline{\mathrm{C}} \mathrm{E}^{2)}$	CEN	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{O E}$	I/O	Comments
n	A0	L	L	L	L	L	X	X	Address and Control meet setup.
n+1	X	X	X	X	H	X	X	X	Clock n+1 Ignored.
n+2	A_{1}	L	L	L	L	L	X	X	Clock Valid.
n+3	X	X	X	X	H	X	X	X	Clock Ignored.
n+4	X	X	X	X	H	X	X	X	Clock Ignored.
n+5	A2	L	L	L	L	L	X	Do	Write Data Do
n+6	A3	L	L	L	L	L	X	D1	Write Data D1
n+7	A4	L	L	L	L	L	X	D2	Write Data D2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

IDT71V2556, IDT71V2558, 128K x 36, 256K x 18, 3.3V Synchronous ZBT™ SRAMs
with 2.5V I/O, Burst Counter, and Pipelined Outputs
Commercial and Industrial Temperature Ranges
Read Operation with Chip Enable Used ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{ADV} / \overline{\mathrm{LD}}$	$\overline{\mathbf{C E}^{(2)}}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / \mathrm{O}^{(3)}$	Comments
n	X	X	L	H	L	X	X	$?$	Deselected.
$\mathrm{n}+1$	X	X	L	H	L	X	X	$?$	Deselected.
$\mathrm{n}+2$	A	H	L	L	L	X	X	Z	Address and Control meet setup
$\mathrm{n}+3$	X	X	L	H	L	X	X	Z	Deselected or STOP.
$\mathrm{n}+4$	A 1	H	L	L	L	X	L	Q	Address Ao Read out. Load A1.
$\mathrm{n}+5$	X	X	L	H	L	X	X	Z	Deselected or STOP.
$\mathrm{n}+6$	X	X	L	H	L	X	L	Q 1	Address A1 Read out. Deselected.
$\mathrm{n}+7$	A 2	H	L	L	L	X	X	Z	Address and control meet setup.
$\mathrm{n}+8$	X	X	L	H	L	X	X	Z	Deselected or STOP.
$\mathrm{n}+9$	X	X	L	H	L	X	L	Q 2	Address A2 Read out. Deselected.

NOTES:

1. $\mathrm{H}=$ High; $L=$ Low; $X=$ Don't Care; ? = Don't Know; $Z=$ High Impedance.
2. $\overline{C E}=L$ is defined as $\overline{C E}_{1}=L, \overline{C E}_{2}=L$ and $C E 2=H . \overline{C E}=H$ is defined as $\overline{C E}_{1}=H, \overline{C E}_{2}=H$ or $C E 2=L$.
3. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.

Write Operation with Chip Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADV/LD	$\overline{\mathrm{C}} \mathrm{E}^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	$1 / 0^{(3)}$	Comments
n	X	X	L	H	L	X	X	?	Deselected.
n+1	X	X	L	H	L	X	X	?	Deselected.
n+2	Ao	L	L	L	L	L	X	Z	Address and Control meet setup
n+3	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+4	A1	L	L	L	L	L	X	Do	Address Do Write in. Load A1.
n+5	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+6	X	X	L	H	L	X	X	D1	Address D1 Write in. Deselected.
n+7	A2	L	L	L	L	L	X	Z	Address and control meet setup.
n+8	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+9	X	X	L	H	L	X	X	D2	Address D2 Write in. Deselected.

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=L, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=H . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range (VDD $=3.3 \mathrm{~V} \pm 5 \%$)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit	
\|lıl	Input Leakage Current	Vdd = Max., $\mathrm{V}^{\prime}=0 \mathrm{~V}$ to VdD	-	5	$\mu \mathrm{A}$	
\|lı		LBO, JTAG and \mathbb{Z} Input Leakage Current ${ }^{(1)}$	$V_{D D}=M a x ., V_{N}=0 V$ to $V_{\text {dD }}$	-	30	$\mu \mathrm{A}$
IILOI	Output Leakage Current	Vout $=0 \mathrm{~V}$ to VddQ, Device Deselected	-	5	$\mu \mathrm{A}$	
Vol	Output Low Voltage	$\mathrm{lOL}=+6 \mathrm{~mA}, \mathrm{~V} D \mathrm{D}=\mathrm{Min}$.	-	0.4	V	
Voн	Output High Voltage	$1 \mathrm{OH}=-6 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	2.0	-	V	

NOTE:
4875 tbl 21

1. The $\overline{\mathrm{LBO}}, \mathrm{TMS}, \mathrm{TDI}, \mathrm{TCK}$ \& TRST pins will be internally pulled to VDD and ZZ will be internally pulled to Vss if it is not actively driven in the application.

DC Electrical Characteristics Over the Operating
Temperature Supply Voltage Range ${ }^{(1)}(\mathrm{VDD}=3.3 \mathrm{~V} \pm 5 \%)$

Symbol	Parameter	Test Conditions	200MHz	166MHz		133MHz		100MHz		Unit
			Com'l Only	Com'l	Ind	Com'l	Ind	Com'l	Ind	
IDD	Operating Power Supply Current	Device Selected, Outputs Open, $A D V / \overline{L D}=X, V D D=M a x$., VIN \geq VIH or $\leq V I L, f=f m a x{ }^{(2)}$	400	350	360	300	310	250	260	mA
ISB1	CMOS Standby Power Supply Current	Device Deselected, Outputs Open, VdD = Max., VIN \geq VhD or $\leq \operatorname{VLD}, f=0^{(2,3)}$	40	40	45	40	45	40	45	mA
ISB2	Clock Running Power Supply Current	Device Deselected, Outputs Open, Vdd = Max., VIN \geq Vhd or < VLD, $f=\operatorname{fMAX}^{(2.3)}$	130	120	130	110	120	100	110	mA
ISB3	Idle Power Supply Current	Device Selected, Outputs Open, $\overline{\mathrm{CEN}} \geq$ Vif, $\mathrm{VdD}=\mathrm{Max}$., VIN \geq VhD or $\leq \operatorname{VLD}, f=$ fmax $^{(2,3)}$	40	40	45	40	45	40	45	mA

NOTES:
4875 tbl 22

1. All values are maximum guaranteed values.
2. At $f=f$ max, inputs are cycling at the maximum frequency of read cycles of $1 / t c y c ; f=0$ means no input lines are changing.
3. For $\mathrm{I} / \mathrm{Os} \mathrm{V} h \mathrm{D}=\mathrm{V} d \mathrm{DQ}-0.2 \mathrm{~V}, \mathrm{~V} L D=0.2 \mathrm{~V}$. For other inputs $\mathrm{VHD}=\mathrm{V} D \mathrm{D}-0.2 \mathrm{~V}, \mathrm{~V} L D=0.2 \mathrm{~V}$.

AC Test Loads

AC Test Conditions
($\mathrm{VDDQ}=2.5 \mathrm{~V}$)

Input Pulse Levels	0 to 2.5 V
Input Rise/Fall Times	2ns
Input Timing Reference Levels	(VDDO/2)
Output Timing Reference Levels	(VDDO/2)
AC Test Load	See Figure 1
$4875 \mathrm{tll}_{23}$	

Figure 2. Lumped Capacitive Load, Typical Derating

AC Electrical Characteristics

（VdD $=3.3 \mathrm{~V} \pm 5 \%$ ，Commercial and Industrial Temperature Ranges）

Symbol	Parameter	200MHz		166MHz		133MHz		100MHz		Unit
		Min．	Max．	Min．	Max	Min．	Max．	Min．	Max	
toyc	Clock Cycle Time	5	－	6	－	7.5	－	10	－	ns
tF ${ }^{(1)}$	Clock Frequence	－	200	－	166	－	133	－	100	MHz
tch ${ }^{(2)}$	Clock High Pulse Width	1.8	－	1.8	－	2.2	－	3.2	－	ns
tcL ${ }^{(2)}$	Clock Low Pulse Width	1.8	－	1.8	－	2.2	－	3.2	－	ns
Output Parameters										
tcD	Clock High to Valid Data	－	3.2	－	3.5	－	4.2	－	5	ns
toc	Clock High to Data Change	1	－	1	－	1	－	1	－	ns
ta．$z^{(3,4,5)}$	Clock High to Output Active	1	－	1	－	1	－	1	－	ns
tch $z^{(3,4,5)}$	Clock High to Data High－Z	1	3	1	3	1	3	1	3	ns
toe	Output Enable Access Time	－	3.2	－	3.5	－	4.2	－	5	ns
to $\chi^{(3,4)}$	Output Enable Low to Data Active	0	－	0	－	0	－	0	－	ns
tork ${ }^{(3,4)}$	Output Enable High to Data High－Z	－	3.5	－	3.5	－	4.2	－	5	ns

Set Up Times

tSE	Clock Enable Setup Time	1.5	－	1.5	－	1.7	－	2.0	－	ns
tSA	Address Setup Time	1.5	－	1.5	－	1.7	－	2.0	－	ns
tsd	Data In Setup Time	1.5	－	1.5	－	1.7	－	2.0	－	ns
tsw	Read／Write（R／W）Setup Time	1.5	－	1.5	－	1.7	－	2.0	－	ns
tSADV	Advance／Load（ADV／LD）Setup Time	1.5	－	1.5	－	1.7	－	2.0	－	ns
tsc	Chip Enable／Select Setup Time	1.5	－	1.5	－	1.7	－	2.0	－	ns
tSB	Byte Write Enable（ $\overline{B W} \mathbf{x}$ ）Setup Time	1.5	－	1.5	－	1.7	－	2.0	－	ns
Hold Times										
the	Clock Enable Hold Time	0.5	－	0.5	－	0.5	－	0.5	－	ns
tha	Address Hold Time	0.5	－	0.5	－	0.5	－	0.5	－	ns
thD	Data In Hold Time	0.5	－	0.5	－	0.5	－	0.5	－	ns
tHw	Read／Write（R／W）Hold Time	0.5	－	0.5	－	0.5	－	0.5	－	ns
thadv	Advance／Load（ADV／（̄匚⿱一口㇒⿵⿰㇒一乂）Hold Time	0.5	－	0.5	－	0.5	－	0.5	－	ns
thc	Chip Enable／Select Hold Time	0.5	－	0.5	－	0.5	－	0.5	－	ns
tнв	Byte Write Enable（ $\overline{\mathrm{BW}} \times$ ）Hold Time	0.5	－	0.5	－	0.5	－	0.5	－	ns

NOTES：
1．$t F=1 / t c y c$ ．
2．Measured as HIGH above 0．6VddQ and LOW below 0．4VdDQ．
3．Transition is measured $\pm 200 \mathrm{mV}$ from steady－state．
4．These parameters are guaranteed with the AC load（Figure 1）by device characterization．They are not production tested．
5．To avoid bus contention，the output buffers are designed such that tchz（device turn－off）is about 1ns faster than tclz（device turn－on）at a given temperature and voltage． The specs as shown do not imply bus contention because tclz is a Min．parameter that is worse case at totally different test conditions（ 0 deg． $\mathrm{C}, 3.465 \mathrm{~V}$ ）than tchz， which is a Max．parameter（worse case at 70 deg．C，3．135V）．

NOTES:

1. Q (A_{1}) represents the first output from the external address A_{1}. $D\left(A_{2}\right)$ represents the input data to the SRAM corresponding to address A_{2}.
2. CE_{2} timing transitions are identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals. For example, when $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ are LOW on this waveform, CE_{2} is HIGH^{2}.
3. Individual Byte Write signals ($\overline{\mathrm{BW}} \mathrm{x}$) must be valid on all write and burst-write cycles. A write cycle is initiated when $\mathrm{R} \overline{\mathrm{W}}$ signal is sampled LOW. The byte write information comes in two cycles before the actual data is presented to the SRAM.

NOTES:

1. $Q\left(A_{1}\right)$ represents the first output from the external address A_{1}. $D\left(A_{2}\right)$ represents the input data to the SRAM corresponding to address A_{2}.
2. CE_{2} timing transitions are identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals. For example, when $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ are LOW on this waveform, CE_{2} is $\mathrm{HIGH}_{\text {. }}$.
3. $\overline{C E N}$ when sampled high on the rising edge of clock will block that L-H transition of the clock from propogating into the SRAM. The part will behave as if the L-H clock transition did not occur. All internal registers in the SRAM will retain their previous state.
4. Individual Byte Write signals $(\overline{\mathrm{BW}} \mathrm{x})$ mustbe valid on all write and burst-write cycles. A write cycle is initiated when R / \bar{W} signal is sampled LOW. The byte write information comes in wo cycle before the actual data is presented to the SRAM.

NOTES:

1. $Q\left(A_{1}\right)$ represents the first output from the external address A_{1}. $D\left(A_{3}\right)$ represents the input data to the SRAM corresponding to address A_{3}.
2. CE_{2} timing transitions are identical but inverted to the $\overline{\mathrm{C} E} 1$ and $\overline{\mathrm{C}} 2$ signals. For example, when $\overline{\mathrm{E}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ are LOW on this waveform, CE_{2} is HIGH^{2}.
3. CEN when sampled high on the rising edge of clock will block that L-H transition of the clock from propogating into the SRAM. The part will behave as if the L-H clocktransition did not occur. All internal registers in the SRAM will retain their previous state.
4. Individual Byte Write signals ($\overline{\overline{W W} x}$) mustbe valid onall write and burst-write cycles. A write cycle is initiated when $\mathrm{R} \bar{W}$ signal is sampled LOW. The byte write information comes intwo cycles before the actual data is presented to the SRAM.

JTAG Interface Specification (SA Version only)

NOTES:

1. Device inputs $=$ All device inputs except TDI, TMS and TRST.
2. Device outputs $=$ All device outputs except TDO.
3. During power up, $\overline{\text { TRST }}$ could be driven low or not be used since the JTAG circuit resets automatically. $\overline{\mathrm{TRST}}$ is an optional JTAG reset.

JTAG AC Electrical

Characteristics ${ }^{(1,2,3,4)}$

Symbol				
	Parameter	Min.	Max.	Units
tJCYC	JTAG Clock Input Period	100	-	ns
tJCH	JTAG Clock HIGH	40	-	ns
tJCL	JTAG Clock Low	40	-	ns
tJR	JTAG Clock Rise Time	-	$5^{(1)}$	ns
tJF	JTAG Clock Fall Time	-	$5^{(1)}$	ns
tJRST	JTAG Reset	50	-	ns
tJRSR	JTAG Reset Recovery	50	-	ns
tJCD	JTAG Data Output	-	20	ns
tJDC	JTAG Data Output Hold	0	-	ns
tJs	JTAG Setup	25	-	ns
tJH	JTAG Hold	25	-	ns

Scan Register Sizes

Register Name	Bit Size
Instruction (IR)	4
Bypass (BYR)	1
JTAG Identification (JIDR)	32
Boundary Scan (BSR)	Note (1)

NOTE:

1. The Boundary Scan Descriptive Language (BSDL) file for this device is available by contacting your local IDT sales representative.

NOTES:

1. Guaranteed by design.
2. AC Test Load (Fig. 1) on external output signals.
3. Refer to AC Test Conditions stated earlier in this document.
4. JTAG operations occur at one speed (10 MHz). The base device may run at any speed specified in this datasheet.

JTAG Identification Register Definitions (SA Version only)

Instruction Field	Value	Description
Revision Number (31:28)	0×2	Reserved for version number.
IDT Device ID (27:12)	$0 \times 210,0 \times 212$	Defines IDT part number 71V2556SA and 71V2558SA, respectively.
IDT JEDEC ID (11:1)	0×33	Allows unique identification of device vendor as IDT.
ID Register Indicator Bit (Bit 0)	1	Indicates the presence of an ID register.

14875 tbl 02

Available JTAG Instructions

Instruction	Description	OPCODE
EXTEST	Forces contents of the boundary scan cells onto the device outputs ${ }^{(1)}$. Places the boundary scan register (BSR) between TDI and TDO.	0000
SAMPLE/PRELOAD	Places the boundary scan register (BSR) between TDI and TDO. SAMPLE allows data from device inputs ${ }^{(2)}$ and outputs ${ }^{(1)}$ to be captured in the boundary scan cells and shifted serially through TDO. PRELOAD allows data to be input serially into the boundary scan cells via the TDI.	0001
DEVICE_ID	Loads the JTAG ID register (JIDR) with the vendor ID code and places the register between TDI and TDO.	0010
HIGHZ	Places the bypass register (BYR) between TDI and TDO. Forces all device output drivers to a High-Z state.	0011
RESERVED	Several combinations are reserved. Do not use codes other than those identified for EXTEST, SAMPLE/PRELOAD, DEVICE_ID, HIGHZ, CLAMP, VALIDATE and BYPASS instructions.	0100
RESERVED		0101
RESERVED		0110
RESERVED		0111
CLAMP	Uses BYR. Forces contents of the boundary scan cells onto the device outputs. Places the bypass register (BYR) between TDI and TDO.	1000
RESERVED	Same as above.	1001
RESERVED		1010
RESERVED		1011
RESERVED		1100
VALIDATE	Automatically loaded into the instruction register whenever the TAP controller passes through the CAPTURE-IR state. The lower two bits '01 are mandated by the IEEE std. 1149.1 specification.	1101
RESERVED	Same as above.	1110
BYPASS	The BYPASS instruction is used to truncate the boundary scan register as a single bit in length.	1111

14875 tbl 04

NOTES:

1. Device outputs = All device outputs except TDO.
2. Device inputs = All device inputs except TDI, TMS, and TRST.

100 Pin Plastic Thin Quad Flatpack (TQFP) Package Diagram Outline

119 Ball Grid Array (BGA) Package Diagram Outline

