imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

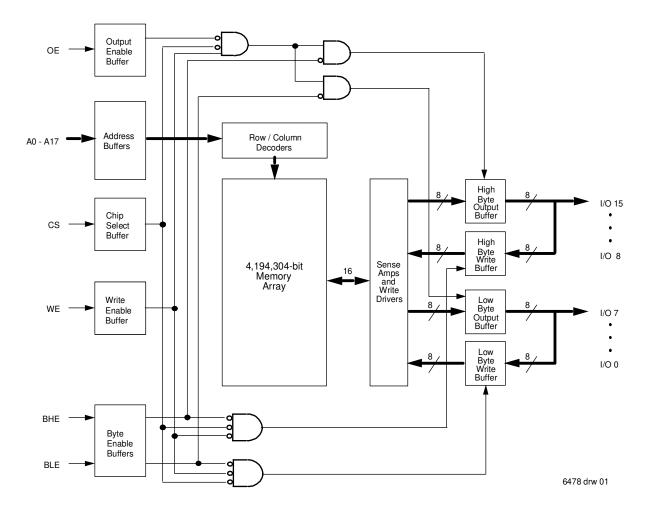
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V CMOS Static RAM 4 Meg (256K x 16-Bit)

IDT71V416VS IDT71V416VL

Features

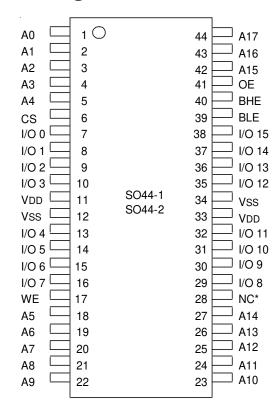
- 256K x 16 advanced high-speed CMOS Static RAM
- JEDEC Center Power / GND pinout for reduced noise.
- Equal access and cycle times


 Commercial and Industrial: 10/12/15ns
- One Chip Select plus one Output Enable pin
- Bidirectional data inputs and outputs directly LVTTL-compatible
- Low power consumption via chip deselect
- Upper and Lower Byte Enable Pins
- Single 3.3V power supply
- Available in 44-pin, 400 mil plastic SOJ package and a 44pin, 400 mil TSOP Type II package and a 48 ball grid array, 9mm x 9mm package.

Description

The IDT71V416 is a 4, 194, 304-bit high-speed Static RAM organized as 256K x 16. It is fabricated using IDT's high-perfomance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for high-speed memory needs.

The IDT71V416 has an output enable pin which operates as fast as 5ns, with address access times as fast as 10ns. All bidirectional inputs and outputs of the IDT71V416 are LVTTL-compatible and operation is from a single 3.3V supply. Fully static asynchronous circuitry is used, requiring no clocks or refresh for operation.


The IDT71V416 is packaged in a 44-pin, 400 mil Plastic SOJ and a 44-pin, 400 mil TSOP Type II package and a 48 ball grid array, 9mm x 9mm package.

Functional Block Diagram

OCTOBER 2008

Pin Configurations - SOJ/TSOP

6478 drw 02 *Pin 28 can either be a NC or connected to Vss

Top View

Pin Descriptions

A0 - A17	Address Inputs	Input	
CS	Chip Select	Input	
WE	Write Enable	Input	
ŌĒ	Output Enable	Input	
BHE	High Byte Enable	Input	
BLE	Low Byte Enable	Input	
VO0 - VO15	Data Input/Output	٧O	
VDD	3.3V Power	Pwr	
Vss	Ground	Gnd	

6478 tbl 01

Commercial and Industrial Temperature Ranges

Pin Configurations - 48 BGA

	1	2	3	4	5	6
A	BLE	ŌĒ	Ao	A1	A2	NC
В	I/Oo	BHE	Аз	A4	CS	I/O8
С	I/O1	I/O2	A5	A6	I/O10	I/O9
D	Vss	I/O3	A 17	A 7	VO11	Vdd
Е	Vdd	I/O4	NC	A16	VO12	Vss
F	I/O6	I/O5	A14	A15	I/O13	I/O14
G	I/O 7	NC	A12	A13	WE	I/O15
н	NC	A8	A9	A10	A11	NC

6478 tbl 11

SOJ Capacitance

(TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 3dV	7	pF
Cvo	I/O Capacitance	Vout = 3dV	8	pF

6478 tbl 02

48 BGA Capacitance

(TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 3dV	6	pF
Cvo	I/O Capacitance	Vout = 3dV	7	pF

NOTE:

6478 tbl 02b

1. This parameter is guaranteed by device characterization, but not production tested.

Symbol	Rating	Value	Unit
Vdd	Supply Voltage Relative to Vss	-0.5 to +4.6	V
Vin, Vout	Terminal Voltage Relative to Vss	-0.5 to VDD+0.5	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Тѕтс	Storage Temperature	-55 to +125	°C
Рт	Power Dissipation	1	W
Ιουτ	DC Output Current	50	mA

Absolute Maximum Ratings⁽¹⁾

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Temperature and Supply Voltage

Grade	Grade Temperature		Vdd
Commercial 0°C to +70°C		0V	See Below
Industrial	-40°C to +85°C	0V	See Below

6478 tbl 05

6478 tbl 06

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd	Supply Voltage	3.0	3.3	3.6	V
Vss	Ground	0 0 0		0	V
Vін	Input High Voltage	2.0	_	VDD+0.3 ⁽¹⁾	۷
V⊫	Input Low Voltage	-0.3 ⁽²⁾	_	0.8	۷

NOTES:

6478 tbl 04

1. VIH (max) = VDD + 1.0V a.c. (pulse width less than tcvc/2) for I \leq 20 mA, once per cycle.

2. VIL (min) = -1.0V a.c. (pulse width less than tcyc/2) for I \leq 20 mA, once per cycle.

<u>C</u> S	ŌĒ	WE	BLE	BHE	I/O0-I/O7	I/O8-I/O15	Function
Н	Х	Х	Х	Х	High-Z	High-Z	Deselected - Standby
L	L	Н	L	Н	DATAOUT	High-Z	Low Byte Read
L	L	Н	н	L	High-Z	DATAOUT	High Byte Read
L	L	Н	L	L	DATAOUT	DATAOUT	Word Read
L	Х	L	L	L	DATAIN	DATAIN	Word Write
L	Х	L	L	Н	DATAIN	High-Z	Low Byte Write
L	Х	L	н	L	High-Z	DATAIN	High Byte Write
L	Н	Н	Х	Х	High-Z	High-Z	Outputs Disabled
L	Х	Х	Н	Н	High-Z	High-Z	Outputs Disabled

Truth Table⁽¹⁾

NOTE:

1. $H = V_{IH}, L = V_{IL}, X = Don't$ care.

6478 tbl 03

DC Electrical Characteristics

(VDD = Min. to Max., Commercial and Industrial Temperature Ranges)

			IDT7 [.]		
Symbol	Parameter	Test Conditions	Min.	Max.	Unit
llul	Input Leakage Current	Vcc = Max., VIN = Vss to VDD	—	5	μA
lllol	Output Leakage Current	VDD = Max., \overline{CS} = VIH, VOUT = Vss to VDD	_	5	μA
Vol	Output Low Voltage	IOL = 8mA, VDD = Min.	_	0.4	V
Vон	Output High Voltage	IOH = -4mA, $VDD = Min$.	2.4	—	V

6478 tbl 07

DC Electrical Characteristics^(1, 2)

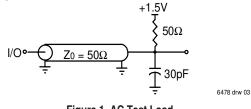
(VDD = Min. to Max., VLC = 0.2V, VHC = VDD - 0.2V)

					6S/L10	71V41	6S/L12	71V41	6S/L15	
Symbol	Parameter			Com'l.	Ind. ⁽⁵⁾	Com'l.	Ind.	Com'l.	Ind.	Unit
lcc	Dynamic Operating Current		Max.	200	200	180	180	170	170	mA
	$\overline{CS} \leq VLC$, Outputs Open, VDD = Max., f = fMAX ⁽⁴⁾		Max.	180	I	170	170	160	160	
		L	Typ.(3)	90		80		70	I	
lsв			Max.	70	70	60	60	50	50	mA
	$\overline{\text{CS}} \ge \text{VHc}$, Outputs Open, $\text{VDD} = \text{Max.}$, $f = \text{fmax}^{(4)}$	L	Max.	50	-	45	45	40	40	
ISB1	Full Standby Power Supply Current (static)	S	Max.	20	20	20	20	20	20	mA
	$\overline{\text{CS}} \ge \text{VHc}$, Outputs Open, VDD = Max., f = 0 ⁽⁴⁾	L	Max.	10	_	10	10	10	10	

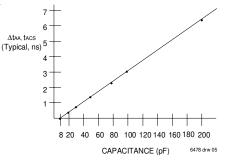
6478 tbl 08

NOTES:

1. All values are maximum guaranteed values, except the typical values.


2. All inputs switch between 0.2V (Low) and VDD -0.2V (High).

3. Typical values are measured at 3.3V, 25°C and with equal read and write cycles. This parameter is guaranteed by device characterization, but not production tested.


4. fMAX = 1/tRc (all address inputs are cycling at fMAX); f = 0 means no address input lines are changing.

5. Standard power 10ns (S10) speed grade only.

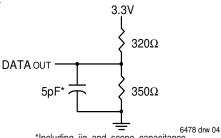

AC Test Loads

Figure 3. Output Capacitive Derating

*Including jig and scope capacitance.

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

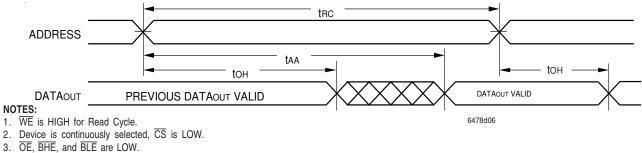
AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	1.5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	Figures 1,2 and 3

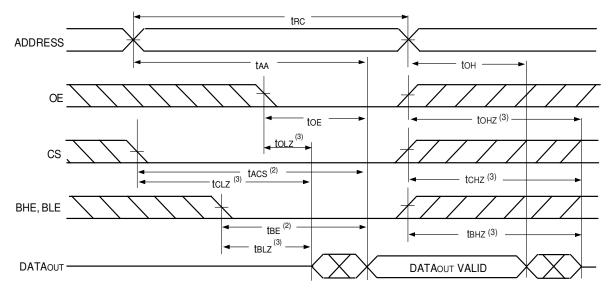
6478 tbl 10

AC Electrical Characteristics

(VDD = Min. to Max., Commercial and Industrial Temperature Ranges)


		71V416	S/L10 ⁽²⁾	71V41	6S/L12	71V41	6S/L15	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE	· [•						
tRC	Read Cycle Time	10		12		15		ns
tAA	Address Access Time	_	10		12		15	ns
tacs	Chip Select Access Time	—	10		12	_	15	ns
tcLZ ⁽¹⁾	Chip Select Low to Output in Low-Z	4		4	_	4		ns
tCHZ ⁽¹⁾	Chip Select High to Output in High-Z	—	5		6		7	ns
tOE	Output Enable Low to Output Valid	_	5		6	_	7	ns
toLZ ⁽¹⁾	Output Enable Low to Output in Low-Z	0		0		0		ns
toHz ⁽¹⁾	Output Enable High to Output in High-Z	_	5		6		7	ns
tон	Output Hold from Address Change	4	_	4		4		ns
tBE	Byte Enable Low to Output Valid	—	5		6		7	ns
tBLZ ⁽¹⁾	Byte Enable Low to Output in Low-Z	0		0		0		ns
tBHZ ⁽¹⁾	Byte Enable High to Output in High-Z	—	5		6		7	ns
WRITE CYCL	E							
twc	Write Cycle Time	10	_	12		15		ns
taw	Address Valid to End of Write	8	_	8	_	10		ns
tcw	Chip Select Low to End of Write	8		8	—	10		ns
tвw	Byte Enable Low to End of Write	8		8		10		ns
tas	Address Set-up Time	0	_	0		0	—	ns
twn	Address Hold from End of Write	0		0		0		ns
twp	Write Pulse Width	8		8		10		ns
tDW	Data Valid to End of Write	5		6		7		ns
tDH	Data Hold Time	0	_	0		0		ns
tow ⁽¹⁾	Write Enable High to Output in Low-Z	3		3		3		ns
twnz ⁽¹⁾	Write Enable Low to Output in High-Z		6		7		7	ns

NOTE:


1. This parameter is guaranteed with the AC Load (Figure 2) by device characterization, but is not production tested.

2. Low power 10ns (L10) speed 0°C to +70°C temperature range only.

Timing Waveform of Read Cycle No. 1^(1,2,3)

Timing Waveform of Read Cycle No. 2⁽¹⁾

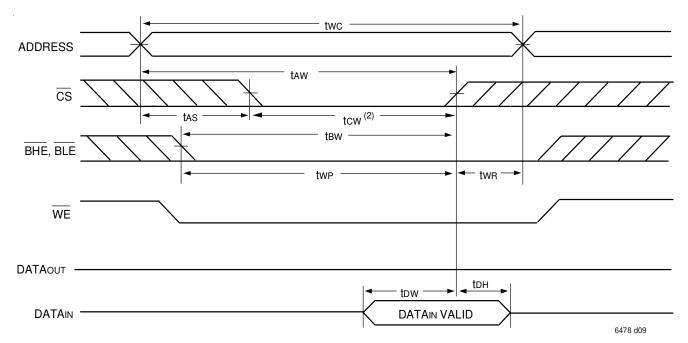

6478 drw 07

NOTES:

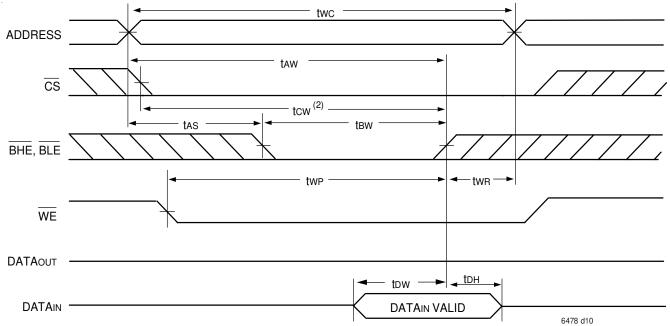
1. WE is HIGH for Read Cycle.

2. Address must be valid prior to or coincident with the later of CS, BHE, or BLE transition LOW; otherwise tAA is the limiting parameter.

3. Transition is measured ±200mV from steady state.



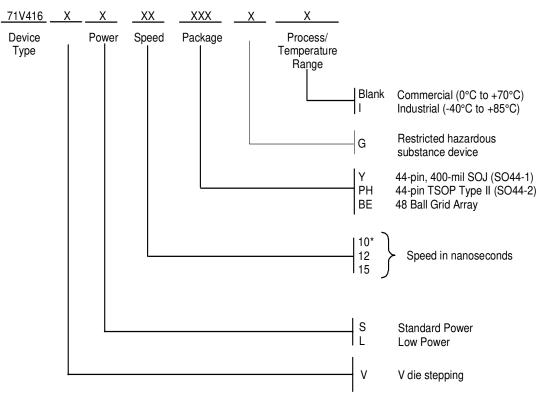
Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)^(1,2,4)


NOTES:

- 1. A write occurs during the overlap of a LOW CS, LOW BHE or BLE, and a LOW WE.
- OE is continuously HIGH. If during a WE controlled write cycle OE is LOW, twp must be greater than or equal to twHZ + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse is as short as the specified twp.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the CS LOW or BHE and BLE LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 5. Transition is measured $\pm 200 \text{mV}$ from steady state.

Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)^(1,3)

Timing Waveform of Write Cycle No. 3 (BHE, BLE Controlled Timing)^(1,3)


NOTES:

1. A write occurs during the overlap of a LOW $\overline{\text{CS}},$ LOW $\overline{\text{BHE}}$ or $\overline{\text{BLE}},$ and a LOW $\overline{\text{WE}}.$

2. During this period, I/O pins are in the output state, and input signals must not be applied.

3. If the CS LOW or BHE and BLE LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.

Ordering Information

* Commercial only for low power 10ns (L10) speed grade.

6478 drw 11a

Datasheet Document History

09/30/04 Released datasheet

10/16/08 Removed "IDT" from orderable part number

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138

for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 for Tech Support: ipchelp@idt.com 800-345-7015

www.idt.com The IDT logo is a registered trademark of Integrated Device Technology, Inc.