: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

- Memory storage capacity:
IDT72V3683 - $16,384 \times 36$
IDT72V3693 - $32,768 \times 36$
IDT72V36103-65,536 x 36
- Clock frequencies up to 100 MHz (6.5 ns access time)
- Clocked FIFO buffering data from Port A to Port B
- IDT Standard timing (using EF and $\overline{\mathrm{FF}}$) or First Word Fall Through Timing (using OR and IR flag functions)
- Programmable Almost-Empty and Almost-Full flags; each has five default offsets ($8,16,64,256$ and 1,024)
- Serial or parallel programming of partial flags
- Port B bus sizing of 36 bits (long word), 18 bits (word) and 9 bits (byte)
- Big- or Little-Endian format for word and byte bus sizes
- Retransmit Capability
- Reset clears data and configures FIFO, Partial Reset clears data but retains configuration settings
- Mailbox bypass registers for each FIFO
- Free-running CLKA and CLKB may be asynchronous or coincident (simultaneous reading and writing of data on a single clock edge is permitted)
- Easily expandable in width and depth
- Auto power down minimizes power dissipation
- Available in a space-saving 128-pin Thin Quad Flatpack (TQFP)
- Pin compatible with the lower density parts, IDT72V3623/ 72V3633/72V3643/72V3653/72V3663/72V3673
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available
- Green parts available, see ordering information

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION

TheIDT72V3683/72V3693/72V36103aredesignedto run offa3.3V supply for exceptionally low power consumption. These devices are monolithic, highspeed, low-power, CMOS unidirectional Synchronous (clocked) FIFO memory which supports clock frequencies up to 100 MHz and has read accesstimes as fastas 6.5 ns . The 16,384/32,768/65,536 36 dual-port SRAM FIFO buffers
data from Port A to Port B. FIFO data on Port B can output in 36-bit, 18-bit, or 9-bitformats with a choice of Big-or Little-Endian configurations.

These devices are synchronous (clocked) FIFOs, meaning each port employs a synchronous interface. All data transfers through a port are gated tothe LOW-to-HIGHtransition of a portclock by enable signals. The clocks for each port are independent of one another and can be asynchronous or

PIN CONFIGURATION

coincident. The enables for each port are arranged to provide a simple bidirectional interface between microprocessors and/or buses with synchronous control.
Communication between each portmay bypass the FIFO viatwo mailbox registers. The mailbox registers' width matches the selected PortB bus width. Each mailbox register has aflag ($\overline{\mathrm{MBF} 1}$ and $\overline{\mathrm{MBF}}$) to signal when new mail has been stored.
Two kinds of resetare available on these FIFOs: Reset and Partial Reset. Resetinitializesthe read and write pointers tothefirstlocation of the memory array and selects serial flag programming, parallel flag programming, or one of five possible defaultflag offset settings, $8,16,64,256$ or 1,024 .
Partial Resetalso sets the read and write pointers to the firstlocation of the memory. Unlike Reset, any settings existing prior to Partial Reset (i.e., programming method and partial flagdefaultoffsets) are retained. Partial Reset is useful since it permits flushing of the FIFO memory without changing any configuration settings.
TheFIFO has Retransmitcapability, aRetransmitisperformedafterfourclock cycles of CLKA and CLKB, by taking the Retransmit pin, $\overline{\mathrm{RT}}$ LOW while the Retransmit Mode pin, $\overline{\text { RTM }}$ is HIGH. Whena Retransmitis performed the read pointer is resetto the firstmemory location.
These devices have two modes of operation:Inthe IDTStandardmode, the firstword written to an empty FIFO is deposited into the memory array. A read operation is required to access that word (along with all other words residing in memory). Inthe First Word Fall Throughmode(FWFT), the firstword written to an empty FIFO appears automatically on the outputs, no read operation required (Nevertheless, accessing subsequent words does necessitate a formal read request). The state of the BE/FWFT pin during Resetdetermines the mode in use.
The FIFO has a combined Empty/Output Ready Flag (EF/OR) and a combinedFull/InputReady Flag(FF/R). The EF and FF functions are selected in the IDT Standard mode. EF indicates whether or not the FIFO memory is empty. FF shows whether the memory is full or not. The IR and OR functions
are selected inthe FirstWord Fall Through mode. IRindicates whetheror not the FIFO has available memory locations. OR shows whether the FIFO has data available for reading or not. It marks the presence of valid data on the outputs.
The FIFO has aprogrammable Almost-Emptyflag ($\overline{\mathrm{AE}}$) and aprogrammable Almost-Full flag ($\overline{\mathrm{AF}}$). $\overline{\mathrm{AE}}$ indicates when a selected number of words remain inthe FIFO memory. $\overline{\text { AF indicates whenthe FIFO contains morethanaselected }}$ number of words.
$\overline{\text { FF IIR and }} \overline{\mathrm{AF}}$ are two-stage synchronized to the port clock that writes data into its array. $\overline{\mathrm{EF}} / \mathrm{OR}$ and $\overline{\mathrm{E}}$ are two-stage synchronized to the portclock that reads data fromits array. Programmable offsets for $\overline{\mathrm{AE}}$ and $\overline{\mathrm{AF}}$ are loaded in parallel using PortA or in serial viathe SD input. Five default offsetsettings are also provided. The $\overline{A E}$ threshold can be setat8, 16, 64, 256 or 1,024 locations from the empty boundary and the $\overline{\mathrm{AF}}$ threshold can be set at $8,16,64,256$ or 1,024 locations from the full boundary. All these choices are made using the FSO, FS1 and FS2 inputs during Reset.
Interspersed Parity is available and can be selected during a Master Reset ofthe FIFO. If Interspersed Parity is selected then during parallel programming of the flag offsetvalues, the device will ignore data line A8. IfNon-Interspersed Parity is selected then data line A8 will become a valid bit.
Two or more devices may be used in parallel to create wider data paths. In First Word Fall Through mode, more than one device may be connected in series to create greater word depths. The addition of external components is unnecessary.
If, at any time, the FIFO is not actively performing a function, the chip will automatically power down. During the power down state, supply current consumption (ICC) is ata minimum. Intiatingany operation (by activating control inputs) will immediately take the device out of the Power Down state.
The IDT72V3683/72V3693/72V36103 are characterizedfor operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available by special order. They are fabricated using IDT's high speed, submicron CMOS technology.

PIN DESCRIPTIONS

Symbol	Name	1/0	Description
A0-A35	Port A Data	I/0	36-bitbidirectional data portfor side A.
$\overline{\mathrm{AE}}$	Almost-EmptyFlag (Port B)	0	Programmable Almost-Empty flag synchronized to CLKB. Itis LOW when the number of words in the FIFO is less than or equal to the value in the Almost-Empty B offset register, X .
$\overline{\mathrm{AF}}$	Almost-Full Flag (Port A)	0	Programmable Almost-Full flag synchronizedto CLKA. Itis LOW when the number of empty locations in the FIFO is less than or equal to the value in the Almost-Full A offset register, Y.
B0-B35	PortB Data	//0	36 -bitbidirectional data portforside B.
BE//FWFT	Big-Endian/ FirstWord Fall Through	I	This is a dual purpose pin. During Master Reset, a HIGH on BE will select Big-Endian operation. In this case, depending on the bus size, the most significant byte or word written to Port A is read from PortBfirst. ALOW on BE will selectLittle-Endian operation. Inthis case, the least significant byte or word written to Port A is read from Port B first. After Master Reset, this pin selects the timing mode. A HIGH on FWFT selects IDT Standard mode, a LOW selects First Word Fall Through mode. Once the timing mode has been selected, the level on FWFT must be static throughout device operation.
$\mathrm{BM}^{(1)}$	Bus-MatchSelect (Port B)	I	A HIGH on this pin enables either byte or word bus width on Port B, depending on the state of SIZE. A LOW selects long word operation. BM works with SIZE and BE to select the bus size and endian arrangement for PortB. The level of BM must be static throughout device operation.
CLKA	PortAClock	I	CLKA is a continuous clock that synchronizes all data transfers through Port A and can be asynchronous or coincident to CLKB. FF/IR and $\overline{\mathrm{AF}}$ are synchronized to the LOW-to-HIGH transition of CLKA.
CLKB	PortBClock	I	CLKB is a continuous clock that synchronizes all data transfers through Port B and can be asynchronous or coincident to CLKA. EF/OR and $\overline{\mathrm{AE}}$ are synchronized to the LOW-to-HIGH transition of CLKB.
$\overline{\mathrm{CSA}}$	Port A Chip Select	1	$\overline{\text { CSA }}$ must be LOW to enable to LOW-to-HIGH transition of CLKA to read or write on Port A. The AO-A35 outputs are in the high-impedance state when $\overline{\text { CSA }}$ is HIGH .
$\overline{\mathrm{CSB}}$	Port B Chip Select	I	$\overline{\text { CSB }}$ must be LOW to enable a LOW-to-HIGH transition of CLKB to read or write data on Port B. The B0-B35 outputs are in the high-impedance state when $\overline{\text { CSB }}$ is HIGH.
EF/OR	Empty/Output Ready Flag (Port B)	0	This is a dual function pin. In the IDT Standard mode, the EF function is selected. $\overline{\mathrm{EF}}$ indicates whetherornothe FIFO memory isempty. Inthe FWFT mode, the ORfunction is selected. ORindicates the presence of valid data on the BO-B35 outputs, available for reading. $\overline{\mathrm{EF}} / O R$ is synchronized to the LOW-to-HIGHtransition of CLKB.
ENA	PortA Enable	\|	ENA must be HIGH to enable a LOW-to-HIGH transition of CLKA to read or write data on Port A.
ENB	PortBEnable	I	ENB must be HIGH to enable a LOW-to-HIGH transition of CLKB to read or write data on Port B.
FF/IR	Full/Input Ready Flag (Port A)	0	This is a dual function pin. In the IDT Standard mode, the $\overline{F F}$ function is selected. $\overline{\text { FF indicates }}$ whether or not the FIFO memory is full. In the FWFT mode, the IR function is selected. IR indicates whether or not there is space available for writing to the FIFO memory. FF/IR is synchronized to the LOW-to-HIGH transition of CLKA.
FSo/SD	Flag OffsetSelect0/ Serial Data,	1	FS1/SEN and FSO/SD are dual-purpose inputs used for flag offset register programming. During Reset, FS1/ $\overline{S E N}$ and FS0/SD, together with FS2 select the flag offset programming method. Three offset register programming methods are available: automatically load one of five preset values ($8,16,64,256$ or 1,024), parallel load from Port A, and serial load.
FS1/ $\overline{S E N}$ FS2 ${ }^{(1)}$	Flag OffsetSelect $1 /$ SerialEnable FlagOffsetSelect2	1	When serial load is selected for flag offset register programming, FS1// $\overline{\mathrm{SEN}}$ is used as an enable synchronous to the LOW-to-HIGH transition of CLKA. When FS1/SEN is LOW, a rising edge on CLKA load the bit present on $\mathrm{FSO} / \mathrm{SD}$ into the X and Y registers. The number of bit writes required to program the offset registers is 28 for the $72 \mathrm{~V} 3683,30$ for the 72 V 3693 , and 32 for the 72 V 36103. The first bit write stores the Y -register MSB and the last bit write stores the X -register LSB.
MBA	Port A Mailbox Select	I	A HIGH level on MBA chooses a mailbox register for a Port A read or write operation.
MBB	Port B Mailbox Select	I	A HIGH level on MBB chooses a mailbox register for a Port B read or write operation. When the BO-B35 outputs are active, a HIGH level on MBB selects data from the maill register for output and aLOW level selects FIFO data for output.

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/0	Description
$\overline{\text { MBF1 }}$	Mail1 Register Flag	0	$\overline{\text { MBF1 }}$ is set LOW by a LOW-to-HIGH transition of CLKA that writes data to the mail1 register. Writes to the mail1 register are inhibited while $\overline{M B F 1}$ is LOW. $\overline{\text { MBF1 }}$ is set HIGH by a LOW-toHIGH transition of CLKB when a Port B read is selected and MBB is HIGH. $\overline{\text { MBF1 }}$ is set HIGH following either a Reset ($\overline{\mathrm{RS} 1}$) or Partial Reset ($\overline{\mathrm{PRS}})$.
$\overline{\text { MBF2 }}$	Mail2 Register Flag	0	$\overline{\text { MBF2 }}$ is set LOW by a LOW-to-HIGH transition of CLKB that writes data to the mail2 register. Writes to the mail2 register are inhibited while $\overline{\text { MBF2 }}$ is LOW. $\overline{\text { MBF2 }}$ is set HIGH by a LOW-toHIGH transition of CLKA when a Port A read is selected and MBA is HIGH. $\overline{\text { MBF2 }}$ is set HIGH following either a Reset ($\overline{\mathrm{RS} 2}$) or Partial Reset ($\overline{\mathrm{PRS}})$.
$\overline{\mathrm{RS} 1}, \overline{\mathrm{RS} 2}$	Resets	I	A LOW on both pins initializes the FIFO read and write pointers to the first location of memory and sets the Port B output register to all zeroes. ALOW-to-HIGH transition on $\overline{\mathrm{RS} 1}$ selects the programming method (serial or parallel) and one of five programmable flag default offsets. It also configures Port B for bus size and endian arrangement. Four LOW-to-HIGH transitions of CLKA and four LOW-toHIGH transitions of CLKB mustoccur while $\overline{\mathrm{RS} 1}$ is LOW.
$\begin{aligned} & \hline \overline{\mathrm{PRS}} / \\ & \overline{\mathrm{RT}} \end{aligned}$	Partial Reset/ Retransmit	I	This pin muxed for both Partial Reset and Retransmit operations, it is used in conjunction withthe RTM pin. If RTM is LOW, thena LOW onthis pininitializes the FIFO read and write pointers tothe firstlocation of memory and sets the Port B output register to all zeroes. During Partial Reset, the currently selected bus size, endian arrangement, programming method (serial or parallel), and programmable flag settings are all retained. If RTM is HIGH, thenaLOW on this pin performs a Retransmit and initializes the read pointer only, to the firstmemory location.
RTM	RetransmitMode	I	This pin is used in conjunction with the $\overline{\mathrm{RT}}$ pin. When RTM is HIGH a Retransmit is performed when $\overline{\mathrm{RT}}$ is taken HIGH .
SIZE ${ }^{(1)}$	BusSizeSelect (Port B)	I	A HIGH on this pin when BM is HIGH selects byte bus (9-bit) size on Port B. A LOW on this pin when BM is HIGH selects word (18-bit) bus size. SIZE works with BM and BE to select the bus size and endian arrangement for Port B. The level of SIZE must be static throughout device operation.
W/ $\overline{R A}$	PortAWrite/ ReadSelect	I	A HIGH selects a write operation and a LOW selects a read operation on Port A for a LOW-to-HIGH transition of CLKA. The A0-A35 outputs are in the HIGH impedance state whenW/RA is HIGH .
W/RB	PortBWrite/ ReadSelect	I	A LOW selects a write operation and a HIGH selects a read operation on Port B for a LOW-to-HIGH transition of CLKB. The B0-B35 outputs are in the HIGH impedance state when $\bar{W} / R B$ is LOW.

NOTE:

1. FS2, BM and SIZE inputs are not TTL compatible. These inputs should be tied to GND or Vcc.

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR
 TEMPERATURE RANGE (Unless otherwise noted) ${ }^{(1)}$

Symbol	Rating	Commercial	Unit
Vcc	Supply Voltage Range	-0.5 to +4.6	V
$\mathrm{VI}^{(2)}$	InputVoltage Range	-0.5 to Vcc +0.5	V
Vo ${ }^{(2)}$	Output Voltage Range	-0.5 to Vcc +0.5	V
Ікк	Input Clamp Current (VI < 0 or $\mathrm{VI} \gg \mathrm{Vcc}$)	± 20	mA
Iok	Output Clamp Current (Vo $=<0$ or Vo > Vcc)	± 50	mA
Iout	Continuous Output Current (Vo $=0$ to Vcc)	± 50	mA
ICC	Continuous Current Through Vcc or GND	± 400	mA
TstG	Storage Temperature Range	-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.

RECOMMENDED OPERATING
 CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{Vcc}^{(1)}$	Supply Voltage	3.15	3.3	3.45	V
VIH	High-Level InputVoltage	2	-	$\mathrm{Vcc}+0.5$	V
VIL	Low-Level InputVoltage	-	-	0.8	V
IOH	High-Level OutputCurrent	-	-	-4	mA
IOL	Low-Level OutputCurrent	-	-	8	mA
TA	OperatingTemperature	0	-	70	${ }^{\circ} \mathrm{C}$

NOTES:

1. $\mathrm{V} \mathrm{CC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}$, JEDEC JESD8-A compliant

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE (Unless otherwise noted)

Symbol	Parameter	Test Conditions		IDT72V3683 IDT72V3693 IDT72V36103 Commercial tcLK $=10,15 \mathrm{~ns}^{(2)}$			Unit
				Min.	Typ.	Max.	
Voh	OutputLogic"1" Voltage	$\mathrm{VcC}=3.0 \mathrm{~V}$,	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4	-	-	V
Vol	OutputLogic "0" Voltage	$\mathrm{VcC}=3.0 \mathrm{~V}$,	$\mathrm{IOL}=8 \mathrm{~mA}$	-	-	0.5	V
ILI	Input Leakage Current (Any Input)	$\mathrm{VcC}=3.6 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{VcC}$ or 0	-	-	± 5	$\mu \mathrm{A}$
ILO	OutputLeakage Current	$\mathrm{Vcc}=3.6 \mathrm{~V}$,	$\mathrm{Vo}=\mathrm{Vcc}$ or 0	-	-	± 5	$\mu \mathrm{A}$
$1 \mathrm{CC2}{ }^{(3)}$	Standby Current (with CLKA and CLKB running)	$\mathrm{VcC}=3.6 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{VcC}=0.2 \mathrm{~V}$ or 0 V	-	-	15	mA
ICC3 ${ }^{(3)}$	Standby Current (no clocks running)	$\mathrm{Vcc}=3.6 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0	-	-	5	mA
CIN(4)	InputCapacitance	$\mathrm{VI}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	-	4	-	pF
Cout ${ }^{(4)}$	OutputCapacitance	$\mathrm{Vo}=0$,	$f=1 \mathrm{MHZ}$	-	8	-	pF

NOTES:

1. All typical values are at $\mathrm{VcC}=3.3 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$.
2. For additional Icc information, see Figure 1, Typical Characteristics: Supply Current (ICC) vs. Clock Frequency (fs).
3. $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ}$ to $+70^{\circ}$; JEDEC JESD8-A compliant
4. Characterized values, not currently tested.

DETERMINING ACTIVE CURRENT CONSUMPTION AND POWER DISSIPATION

The ICC(f) currentfor the graph in Figure 1 was taken while simultaneously reading and writing a FIFO on the IDT72V3683/72V3693/72V36103 with CLKA andCLKB settofs. Alldatainputs and data outputs change state during each clock cycle to consume the highest supplycurrent. Data outputs were disconnected to normalize the graphto azero capacitance load. Once the capacitance load perdata-outputchannel and the number of IDT72V3683/72V3693/72V36103 inputs driven by TTL HIGH levels are known, the power dissipation can be calculated with the equation below.

CALCULATING POWER DISSIPATION

With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of these FIFOs may be calculated by:

$$
P_{T}=\operatorname{Vcc} x \operatorname{ICC}(f)+\Sigma\left(\operatorname{CLx} \operatorname{Vcc}{ }^{2} x f_{0}\right)
$$

N
where:
$\mathrm{N}=\quad=\quad$ number of used outputs (36-bit (long word), 18-bit (word) or 9-bit (byte) bus size)
$\mathrm{CL} \quad=\quad$ output capacitance load
fo = switching frequency of an output

Figure 1. Typical Characteristics: Supply Current (ICc) vs. Clock Frequency (fs)

TIMING REQUIREMENTS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE

(Vcc $=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V} ; \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	$\begin{aligned} & \text { IDT72V3683L10 } \\ & \text { IDT72V3693L10 } \\ & \text { IDT72V36103L10 } \\ & \hline \end{aligned}$		$\begin{array}{\|c\|} \hline \text { IDT72V3683L15 } \\ \text { IDT72V3693L15 } \\ \text { IDT72V36103L15 } \\ \hline \end{array}$		Unit
		Min.	Max.	Min.	Max.	
fs	Clock Frequency, CLKA or CLKB	-	100	-	66.7	MHz
tCLK	Clock Cycle Time, CLKA or CLKB	10	-	15	-	ns
tCLKH	Pulse Duration, CLKA or CLKB HIGH	4.5	-	6	-	ns
tCLKL	Pulse Duration, CLKA and CLKB LOW	4.5	-	6	-	ns
tDS	Setup Time, A0-A35 before CLKA \uparrow and B0-B35 before CLKB \uparrow	3	-	4	-	ns
tENS1	Setup Time, $\overline{\mathrm{CSA}}$ and W/RA before CLKA \uparrow; $\overline{\mathrm{CSB}}$ and $\overline{\mathrm{W}} / \mathrm{RB}$ before CLKB \uparrow	4	-	4.5	-	ns
tENS2	Setup Time, ENA, and MBA before CLKA \uparrow; ENB and MBB before CLKB \uparrow	3	-	4.5	-	ns
tRSTS	Setup Time, $\overline{\mathrm{RS} 1}$ or $\overline{\mathrm{PRS}} \mathrm{LOW}$ before CLKA \uparrow or CLKB $\uparrow^{(1)}$	5	-	5	-	ns
tFSS	Setup Time, FS0, FS1 and FS2 before RS1 HIGH	7.5	-	7.5	-	ns
tBES	Setup Time, BE/FWFT before $\overline{\text { RS1 }}$ HIGH	7.5	-	7.5	-	ns
tSDS	Setup Time, FSO/SD beforeCLKA \uparrow	3	-	4	-	ns
tSENS	Setup Time, FS1//EENbeforeCLKA \uparrow	3	-	4	-	ns
tFWS	Setup Time, FWFTbeforeCLKA \uparrow	0	-	0	-	ns
tDH	Hold Time, A0-A35 after CLKA \uparrow and B0-B35 after CLKB \uparrow	0.5	-	1	-	ns
tRTMS	Setup Time, RTM before $\overline{\text { RT1 }}$; RTM before $\overline{\text { RT2 }}$	5	-	5	-	ns
tenh	Hold Time $\overline{\mathrm{CSA}}, \mathrm{W} / \overline{\mathrm{RA}}, \mathrm{ENA}$, and MBA after CLKA $\uparrow ; \overline{\mathrm{CSB}}, \overline{\mathrm{W}} / \mathrm{RB}, \mathrm{ENB}$, and MBB afterCLKB \uparrow	0.5	-	1	-	ns
tRSTH	Hold Time, $\overline{\mathrm{RS} 1}$ or $\overline{\mathrm{PRS}} \mathrm{LOW}$ after CLKA \uparrow or CLKB ${ }^{(1)}$	4	-	4	-	ns
tFSH	Hold Time, FS0, FS1 and FS2 after $\overline{\text { RS1 }}$ HIGH	2	-	2	-	ns
tBEH	Hold Time, BE/FWFT after $\overline{\text { RS1 }}$ HIGH	2	-	2	-	ns
tSDH	Hold Time, FSO/SD after CLKA \uparrow	0.5	-	1	-	ns
tSENH	Hold Time, FS1/SEN HIGH after CLKA \uparrow	0.5	-	1	-	ns
tSPH	Hold Time, FS1//̄EN HIGH after $\overline{\text { RS1 }}$ HIGH	2	-	2	-	ns
tRTMH	Hold Time, RTM after $\overline{\text { RT1 }}$; RTM after $\overline{\mathrm{RT}}$ 2	5	-	5	-	ns
tSKEW1 ${ }^{(2)}$	Skew Time between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{EF}} / \mathrm{OR}$ and $\overline{\mathrm{FF}} / \mathrm{IR}$	5	-	7.5	-	ns
tSKEW2 ${ }^{(2,3)}$	Skew Time between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{AE}}$ and $\overline{\mathrm{AF}}$	12	-	12	-	ns

NOTES:

1. Requirement to count the clock edge as one of at least four needed to reset a FIFO.
2. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.
3. Design simulated, not tested.

SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL $=30 \mathrm{pF}$

(Vcc $=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V} ; \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter			$\begin{aligned} & \text { IDT72V3683L15 } \\ & \text { IDT72V3693L15 } \\ & \text { IDT72V36103L15 } \\ & \hline \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	
tA	Access Time, CLKA \uparrow to A0-A35 and CLKB \uparrow to B0-B35	2	6.5	2	10	ns
tWFF	Propagation Delay Time, CLKA \uparrow to $\overline{\text { FF/IR }}$	2	6.5	2	8	ns
tREF	Propagation Delay Time, CLKB \uparrow to $\overline{\mathrm{EF}} / \mathrm{OR}$	1	6.5	1	8	ns
tPAE	Propagation Delay Time, CLKB \uparrow to $\overline{\mathrm{AE}}$	1	6.5	1	8	ns
tPAF	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{AF}}$	1	6.5	1	8	ns
tPMF	Propagation Delay Time, CLKA to $\overline{\mathrm{MBF} 1} \mathrm{LOW}$ or $\overline{\mathrm{MBF} 2}$ and CLKB \uparrow to $\overline{\mathrm{MBF}}$ LOW or MBF1 HIGH	0	6.5	0	8	ns
tPMR	Propagation Delay Time, CLKA \uparrow to $\mathrm{B0}-\mathrm{B} 35{ }^{(1)}$ and CLKB \uparrow to $\mathrm{A} 0-\mathrm{A} 35{ }^{(2)}$	2	8	2	10	ns
tMDV	Propagation Delay Time, MBA to A0-A35 valid and MBB to B0-B35 Valid	2	6.5	2	10	ns
tRSF	Propagation Delay Time, $\overline{\mathrm{RS} 1}$ or $\overline{\mathrm{PRS}} \mathrm{LOW}$ to $\overline{\mathrm{AE}} \mathrm{LOW}, \overline{\mathrm{AF}} \mathrm{HIGH}, \overline{\mathrm{MBF}} \mathrm{HIGH}$ and $\overline{\text { MBF2 }}$ HIGH	1	10	1	15	ns
ten	Enable Time, $\overline{\mathrm{CSA}}$ and W/ $\overline{\mathrm{RA}}$ LOW to A0-A35 Active and $\overline{\mathrm{CSB}}$ LOW and $\bar{W} /$ RB HIGH to B0-B35 Active	2	6	2	10	ns
tDIS	Disable Time, $\overline{\mathrm{CSA}}$ or W/ $\overline{\mathrm{RA}}$ HIGH to A0-A35 at high-impedance and $\overline{\mathrm{CSB}}$ HIGH or $\bar{W} /$ RB LOW to B0-B35 at high-impedance	1	6	1	8	ns

NOTES:

1. Writing data to the mail1 register when the BO-B35 outputs are active and MBB is HIGH.
2. Writing data to the mail2 register when the AO-A35 outputs are active and MBA is HIGH.

SIGNAL DESCRIPTION

RESET ($\overline{\mathrm{RS} 1}, \overline{\mathrm{RS} 2})$

After power up, a Reset operation must be performed by providing a LOW pulse to $\overline{\mathrm{RS} 1}$ and $\overline{\mathrm{RS} 2}$ simultaneously. Afterwards, the FIFO memory of the IDT72V3683/72V3693/72V36103 undergoes a complete reset by taking its Reset $(\overline{\mathrm{RS} 1}$ and $\overline{\mathrm{RS} 2})$ inputLOW for at least four Port A clock (CLKA) and four Port B clock (CLKB) LOW-to-HIGH transitions. The Reset inputs can switch asynchronously to the clocks. A Reset initializes the internal read and write
 Ready flag($\overline{\mathrm{EF}} / \mathrm{OR}$) LOW, the Almost-Empty flag ($\overline{\mathrm{AE}})$ LOW, and the AlmostFullflag ($\overline{\mathrm{AF}}) \mathrm{HIGH}$. AReset $(\overline{\mathrm{RS1}})$ also forces the Mailboxflag $(\overline{\mathrm{MBF}})$ of the parallelmailbox registerHIGH, andatthe same timethe $\overline{R S 2}$ and $\overline{M B F} 2$ operate likewise. After a Reset, the FIFO's Full/Input Ready flag is setHIGH after two write clock cycles to begin normal operation.

ALOW-to-HIGHtransition on the FIFO Reset ($\overline{\mathrm{RS} 1}$) inputlatches the value of the Big-Endian (BE) input for determining the order by which bytes are transferred through PortB.

ALOW-to-HIGH transition on the FIFO Reset ($\overline{\mathrm{RS} 1})$ input also latches the values of the Flag Select (FS0, FS1 and FS2) inputs for choosing the AlmostFull and Almost-Empty offsetprogrammingmethod (fordetailsseeTable 1, Flag Programming, and Almost-Empty and Almost-Full flag offset programming section). The relevant Reset timing diagram can be found in Figure 3.

PARTIAL RESET ($\overline{\text { PRS }})$

The FIFO memory of the IDT72V3683/72V3693/72V36103 undergoes a limited reset by taking its Partial Reset ($\overline{\mathrm{PRS})}$ input LOW for at least four Port A clock (CLKA) andfourPortBclock (CLKB)LOW-to-HIGH transitions. The RTM pin mustbeLOW during the time of Partial Reset. The Partial Resetinput can switch asynchronously tothe clocks. A Partial Resetinitializes the internal read and write pointers andforces the Full/InputReady flag(产/IR)LOW, the Empty/ Output Ready flag ($\overline{\mathrm{EF}} / \mathrm{OR}$) LOW, the Almost-Empty flag $(\overline{\mathrm{AE}})$ LOW, and the Almost-Fullflag $(\overline{\mathrm{AF}}) \mathrm{HIGH}$. A Partial Resetalsoforces the Mailboxflag $(\overline{\mathrm{MBF}}$, MBF2) of the parallel mailbox register HIGH. After a Partial Reset, the FIFO's Full/Input Ready flag is setHIGH after two WriteClock cycles to begin normal operation. See Figure 4, Partial Reset (IDT Standard and FWFTModes) for the relevanttiming diagram.

Whatever flag offsets, programming method (parallel or serial), and timing mode(FWFT or IDT Standardmode) are currently selected atthetimeaPartial Reset is initiated, those settings will be remain unchanged upon completion of the reset operation. A Partial Reset may be useful in the case where reprogramming a FIFO following a Reset would be inconvenient.

RETRANSMIT ($\overline{\mathrm{RT}}$)

The FIFO memory of these devices undergoes a Retransmit by taking its associated Retransmit $(\overline{\mathrm{RT}})$ inputLOWforatleastfourPortAClock (CLKA) and four PortBClock (CLKB) LOW-to-HIGH transitions. The Retransmitinitializes the read pointer of FIFO to the first memory location.

The RTM pin mustbe HIGH during the time of Retransmit. Note that the $\overline{\text { RT }}$ inputis muxed with the $\overline{\mathrm{PRS}}$ input, the state of the RTM pin determining whether this pin performs a Retransmitora Partial Reset. See Figure 19 for Retransmit (Standard IDT mode) and figure 20 for Retransmit (FWFT mode) timing diagrams.

BIG-ENDIAN/FIRST WORD FALL THROUGH (BE/FWFT)

- ENDIAN SELECTION

Thisis adual purposepin. Atthetime of Reset, theBEselectfunctionis active, permittingachoice of Big- orLittle-Endian byte arrangementfor data read from PortB. This selection determines the order by which bytes (or words) of data are transferred throughthis port. For the following illustrations, assume thata byte (or word) bus size has been selected for Port B. (Note that when Port B is configured for a long word size, the Big-Endianfunction has no application and the BE input is a "don't care" ${ }^{1}$.)
AHIGH ontheBE/FWFT input whenthe Reset($\overline{\mathrm{RS} 1})$ input goes from LOW to HIGH will selecta Big-Endian arrangement. Inthis case, the mostsignificant byte (word) of the long word written to Port A will be read from Port B first; the least significant byte (word) of the long word written to Port A will be read from PortBlast.
ALOW ontheBE/FWFT inputwhenthe Reset($\overline{\mathrm{RS} 1})$ input goes from LOW toHIGH will selectaLittle-Endian arrangement. Inthiscase, the leastsignificant byte (word) of the long word written to Port A will be read from Port B first; the most significant byte (word) of the long word written to Port A will be read from PortBlast. Refer to Figure 2 for an illustration of the BE function. See Figure 3(Reset) for an Endian select timing diagram.

- TIMING MODE SELECTION

After Reset, the FWFT selectfunction is active, permitting achoice between two possible timing modes: IDT Standard mode or First Word Fall Through (FWFT) mode. Oncethe Reset ($\overline{\text { RS1 }})$ input is HIGH, a HIGH ontheBE/FWFT input during the next LOW-to-HIGH transition of CLKA and CLKB will select IDT Standardmode. This mode uses the Empty Flag function ($\overline{\mathrm{EF}})$ to indicate whether or not there are any words present in the FIFO memory. It uses the Full Flagfunction ($\overline{\mathrm{FF}}$) to indicate whetherornot the FIFO memory has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using a formal read operation.
Once the Reset ($\overline{\mathrm{RS} 1}$) input is HIGH, aLOW on the BE/FWFT input during the nextLOW-to-HIGHtransition of CLKA and CLKB will selectFWFT mode. This modeusestheOutputReadyfunction(OR)to indicate whetherornotthere is valid data atthe dataoutputs (B0-B35). Italso uses the Input Ready function (IR) to indicate whether or not the FIFO memory has any free space for writing. IntheFWFT mode, the first word writtento an empty FIFO goes directly to data outputs, no read requestnecessary. Subsequent words mustbe accessed by performing a formal read operation.
Following Reset, the level applied to the BE/FWFT input to choose the desiredtiming mode must remain static throughout FIFO operation. Referto Figure 3 (Reset) for a First Word Fall Through select timing diagram.

PROGRAMMING THE ALMOST-EMPTY AND ALMOST-FULL FLAGS

Two registers inthe IDT72V3683/72V3693/72V36103 are used to hold the offsetvaluesforthe Almost-Empty and Almost-Fullflags. The Almost-Emptyflag ($\overline{\mathrm{AE}}$) Offsetregister is labeledX and Almost-Fullflag($\overline{\mathrm{AF}})$ Offsetregisterislabeled Y. The offset registers can be loaded with preset values during the reset of the FIFO, programmed in parallel using the FIFO's Port A data inputs, or programmed in serial usingthe Serial Data (SD) input(see Table 1). FS2 FS0/ SD, and FS1//SEN function the same way in both IDT Standard and FWFT modes.

[^0]
TABLE 1 -FLAG PROGRAMMING

FS2	FS1/SEN	FS0/SD	$\overline{\mathrm{RS} 1}$	X AND Y REGISTERS ${ }^{(1)}$
H	H	H	\uparrow	64
H	H	L	\uparrow	16
H	L	H	\uparrow	8
L	H	H	\uparrow	256
L	L	H	\uparrow	1,024
L	H	L	\uparrow	Serial programming via SD
H	L	L	\uparrow	Parallel programming via Port ${ }^{(2,4)}$
L	L	L	\uparrow	IP Mode ${ }^{(3,4)}$

NOTE:

1. X register holds the offset for $\overline{\mathrm{AE}} ; \mathrm{Y}$ register holds the offset for $\overline{\mathrm{AF}}$.
2. When this method of parallel programming is selected, Port A will assume Non-Interspersed Parity.
3. When IP Mode is selected, only parallel programming of the offset values via Port A, can be performed and Port A will assume Interspersed Parity.
4. IF parallel programming is selected during a Master Reset, then FSO \& FS1 must remain LOW during FIFO operation.

- PRESET VALUES

ToloadaFIFO's Almost-Empty flag and AImost-Fullflag Offsetregisters with oneof the five presetvalues listedinTable 1, the flagselectinputs mustbeHIGH or LOW during a reset. For example, to load the preset value of 64 into X and Y,FS0, FS1 and FS2 mustbeHIGH when $\overline{\mathrm{RS} 1}$ returns HIGH. Forthe relevant preset value loading timing diagram, see Figure 3.

—PARALLEL LOAD FROM PORT A

To programthe XandY registers from PortA, performaResetwithFS2HIGH or LOW and FS0 and FS1 LOW during the LOW-to-HIGH transition of $\overline{\text { RS1 }}$. The state of FS2 at this point of reset will determine whether the parallel programming method has Interspersed Parity or Non-Interspersed Parity. Referto Table 1 forFlag Programming Flag Offsetsetup. It is importantto note that once parallel programming has been selected during a Master Reset by holding both FS0 \& FS1 LOW, these inputs must remain LOW during all subsequent FIFO operation. They can only be toggled HIGH when future Master Resets are performed and other programming methods are desired.
After this reset is complete, the first two writes to the FIFO do not store data in RAM. The firsttwo write cycles load the offset registers in the order Y, X. On the third write cycletheFIFO is ready to be loaded with a data word. SeeFigure 5, Parallel Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT modes), for a detailed timing diagram. ForNon-Interspersed Parity modethe Port A datainputs used by the Offset registers are (A13-A0), (A14-A0), or (A15-A0) fortheIDT72V3683, IDT72V3693, or IDT72V36103, respectively. For Interspersed Parity mode the Port A data inputs used by the Offset registers are (A14-A9, A7-A0), (A15A9, A7-A0), or (A16-A9, A7-A0) for the IDT72V3683, IDT72V3693, or IDT72V36103, respectively. The highest numbered inputis used as the most significantbit of thebinary number in each case. Valid programming values for the registers range from 1 to 16,380 for the IDT72V3683; 1 to 32,764 for the IDT72V3693; and 1 to 65,532 forthe IDT72V36103. Afterall the offsetregisters are programmed from Port A, the FIFO begins normal operation.

INTERSPERSED PARITY

Interspersed Parity is selected during a Master Reset of the FIFO. Refer to Table 1 for the set-up configuration of Interspersed Parity. The Interspersed Parity function allows the userto select the location of the parity bits in the word loaded into the parallel port (AO-An) during programming of the flag offset values. If Interspersed Parity is selected then during parallel programming of
the flag offset values, the device will ignore data line A8. If Non-Interspersed Parity is selected then dataline A8 will becomea valid bit. If Interspersed Parity is selected serial programming of the offsetvalues is notpermitted, only parallel programming can be done.

- SERIAL LOAD

Toprogramthe XandY registersserially, initiateaResetwithFS2LOW,FSO/ SDLOW andFS1/SEN HIGHduringtheLOW-to-HIGHtransition of $\overline{R S 1}$. After this reset is complete, the X and Y register values are loaded bit-wise through the FSO/SD inputoneachLOW-to-HIGHtransition of CLKA that the FS1/SEN input is LOW. There are 28-, 30- or 32-bit writes needed to complete the programming forthe IDT72V3683, IDT72V3693orthe IDT72V36103, respectively. The two registers are written in the order Y, X. Each register value can be programmed from 1 to 16,380 (IDT72V3683), 1 to 32,764 (IDT72V3693) or 1 to 65,532 (IDT72V36103).

When the option to program the offset registers serially is chosen, the Full/ Input Ready ($\overline{\mathrm{FF}} / \mathrm{IR}$) flag remains LOW until all register bits are written. $\overline{\mathrm{FF}} / \mathrm{IR}$ is setHIGH by the LOW-to-HIGH transition of CLKA after the lastbitis loaded to allow normal FIFO operation.

See Figure 6, Serial Programming of the Almost-Full Flag and AlmostEmpty Flag Offset Values after Reset (IDT Standard and FWFT Modes).

FIFO WRITE/READ OPERATION

The state ofthe Port A data (A0-A35) lines is controlled by Port A Chip Select $(\overline{\mathrm{CSA}})$ and Port A Write/Read select $(\mathrm{W} / \overline{\mathrm{RA}})$. The A0-A35 lines are intheHighimpedance state when either $\overline{\mathrm{CSA}}$ or $\mathrm{W} / \overline{\mathrm{RA}}$ is HIGH. The A0-A35 lines are active outputs when both $\overline{C S A}$ and $W / \overline{R A}$ are LOW.

Data is loaded into the FIFO from the A0-A35 inputs on a LOW-to-HIGH transition of CLKA when $\overline{\mathrm{CSA}}$ is LOW, W/RA is HIGH, ENA is HIGH, MBA is LOW, and $\overline{F F} / I R$ is HIGH (see Table2). FIFO writes on Port A are independent of any concurrent reads on Port B.

The Port Bcontrol signals are identical to those of Port A with the exception thatthe PortBWrite/Readselect ($\bar{W} / R B$) istheinverse of the PortAWrite/Read select $(W / \overline{R A})$. The state of the Port B data (B0-B35) lines is controlled by the Port BChip Select ($\overline{\mathrm{CSB}}$) and PortBWrite/Read select ($\overline{\mathrm{W}} / \mathrm{RB}$). The B0-B35 lines are inthehigh-impedancestate wheneither $\overline{C S B}$ is HIGH or \bar{W} / RB isLOW. The B0-B35 lines are active outputs when $\overline{\mathrm{CSB}}$ is LOW and \bar{W} / RB is HIGH.

Datais readfromtheFIFOtotheB0-B35 outputsbyaLOW-to-HIGHtransition of CLKB when $\overline{\mathrm{CSB}}$ is LOW, $\bar{W} /$ RB is HIGH, ENB is HIGH, MBB is LOW, and

TABLE 2 - PORT-A ENABLE FUNCTION TABLE

$\overline{\text { CSA }}$	W/RA	ENA	MBA	CLKA	Data A (A0-A35) I/O	Port Functions
H	X	X	X	X	High-Impedance	None
L	H	L	X	X	Input	None
L	H	H	L	\uparrow	Input	FIFOWrite
L	H	H	H	\uparrow	Input	Mail1 Write
L	L	L	L	X	Output	None
L	L	H	L	\uparrow	Output	None
L	L	L	H	X	Output	None
L	L	H	H	\uparrow	Output	Mail2 Read (Set $\overline{\text { MBF2 HIGH) }}$

TABLE 3 - PORT-B ENABLE FUNCTION TABLE

$\overline{\text { CSB }}$	$\overline{\text { W } / R B ~}$	ENB	MBB	CLKB	Data B (B0-B35) I/O	Port Functions
H	X	X	X	X	High-Impedance	None
L	L	L	X	X	Input	None
L	L	H	L	\uparrow	Input	None
L	L	H	H	\uparrow	Input	Mail2Write
L	H	L	L	X	Output	None
L	H	H	L	\uparrow	Output	FIFO read
L	H	L	H	X	Output	None
L	H	H	H	\uparrow	Output	Mail1 Read (Set $\overline{\text { MBF1 }}$ HIGH)

TABLE 4 - FIFO FLAG OPERATION (IDT STANDARD AND FWFT MODES)

Number of Words in $\mathrm{FIFO}^{(1,2)}$			$\begin{gathered} \text { Synchronized } \\ \text { to CLKB } \\ \hline \end{gathered}$		Synchronized to CLKA	
IDT72V3683 ${ }^{(3)}$	IDT72V3693 ${ }^{(3)}$	IDT72V36103 ${ }^{(3)}$	EF/OR	$\bar{A} \bar{E}$	$\overline{\mathrm{AF}}$	FF/IR
0	0	0	L	L	H	H
1 to X	1 to X	1 to X	H	L	H	H
$(\mathrm{X}+1)$ to [16,384-($\mathrm{Y}+1)$]	$(\mathrm{X}+1)$ to [32,768-($\mathrm{Y}+1)$]	$(\mathrm{X}+1)$ to [65,536-(Y+1)]	H	H	H	H
$(16,384-Y)$ to 16,383	(32,768-Y) to 32,767	(65,536-Y) to 65,535	H	H	L	H
16,384	32,768	65,536	H	H	L	L

NOTES:

1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first word written to an empty FIFO goes unrequested to the output register (no read operation necessary), it is not included in the memory count.
3. X is the Almost-Empty offset used by $\overline{\mathrm{A} E}$. Y is the Almost-Full offset used by $\overline{\mathrm{AF}}$. Both X and Y are selected during a FIFO reset or Port A programming.
$\overline{E F} / O R$ is HIGH (see Table 3). FIFO reads on Port B are independent of any concurrent writes on Port A.

The setupandholdtime constraintstotheportclocksfortheportChipSelects and Write/Read selects are only for enabling write and read operations and are not related to high-impedance control of the data outputs. If a portenable is LOW during a clock cycle, the port'sChipSelect and Write/Readselectmay change states during the setup and hold time window of the cycle.

When operating the FIFO in FWFTmode and the Output Ready flagis LOW, the next word written is automatically senttothe FIFO's output register by the LOW-to-HIGHtransition ofthe portclockthatsetsthe Output Readyflag HIGH.

Whenthe Output Ready flag is HIGH, data residing intheFIFO's memoryarray is clocked to the output register only when a read is selected using the port's Chip Select, Write/Read select, Enable, and Mailbox select.
When operating the FIFO in IDT Standard mode, regardless of whether the Empty Flag is LOW or HIGH, data residing in the FIFO's memory array is clocked to the output register only when a read is selected using the port's Chip Select, Write/Read select, Enable, and Mailbox select. Port A Write timing diagram can be found in Figure 7. Relevant Port B Read timing diagrams together with Bus-Matching and Endian select can be found in Figure 8, 9 and 10.

SYNCHRONIZED FIFO FLAGS

Each FIFO is synchronizedtoits portclockthrough atleasttwoflip-flopstages. This is done to improve flag-signal reliability by reducing the probability of metastable events when CLKA and CLKB operate asynchronously to one another. $\overline{F F} / I R$, and $\overline{\mathrm{AF}}$ are synchronized to CLKA. EF/OR and $\overline{\mathrm{AE}}$ are synchronizedto CLKB. Table 4 shows the relationship of each portflag to the number of words stored in memory.

EMPTY/OUTPUTREADYFLAGS(EF/OR)

These are dual purpose flags. In the FWFT mode, the Output Ready (OR) function is selected. WhentheOutput-Ready flagis HIGH, new data is present inthe FIFO output register. When the Output Ready flagis LOW, the previous data word is present inthe FIFO output register and attempted FIFO reads are ignored.
In the IDTStandard mode, the Empty Flag ($\overline{\mathrm{EF}}$) function is selected. When the Empty Flag is HIGH, data is available in the FIFO's memory for reading to the output register. When the Empty Flag is LOW, the previous data word is present in the FIFO output register and attempted FIFO reads are ignored.

The Empty/OutputReady flagofaFIFO is synchronizedtothe portclockthat reads datafromits array (CLKB). Forboththe FWFT and IDTStandard modes, the FIFO read pointerisincrementedeachtime anewwordis clockedtoits output register. The state machine that controls an Output Ready flag monitors a write pointer and read pointer comparatorthatindicates whenthe FIFO memorystatus is empty, empty +1 , orempty +2 .
In FWFT mode, from the time a word is written to a FIFO, it can be shifted to the FIFO outputregisterin a minimum of three cycles of the Output Ready flag synchronizing clock. Therefore, an Output Ready flag is LOW if a word in memory is the next data to be sentto the FIFO output register and three cycles of the portClock that reads data from the FIFO have notelapsed since the time the word was written. The Output Ready flag ofthe FIFO remains LOW until the thirdLOW-to-HIGHtransition ofthe synchronizing clockoccurs, simultaneously forcing the Output Ready flag HIGH and shifting the word to the FIFO output register.
In IDTStandard mode, from the time a word is written to aFIFO, the Empty Flag will indicate the presence of data available for reading in a minimum of two cycles of the Empty Flagsynchronizing clock. Therefore, an Empty Flagis LOW if a word in memory is the next data to be sent to the FIFO output register and two cycles of the portClock that reads datafrom the FIFO have notelapsedsince the time the word was written. The Empty Flag of the FIFO remains LOW until the second LOW-to-HIGH transition of the synchronizing clock occurs, forcing the Empty Flag HIGH; only then can data be read.
A LOW-to-HIGHtransition on an Empty/Output Ready flag synchronizing clock begins the firstsynchronization cycle of a writeifthe clocktransition occurs attimetSKEW1 or greater after the write. Otherwise, the subsequent clock cycle can be the first synchronization cycle (see Figures 11 and 12).

FULLIINPUT READY FLAGS (FF/IR)

This is a dual purpose flag. In FWFT mode, the Input Ready (IR) function is selected. InIDTStandard mode, the Full Flag (FF) function is selected. For bothtiming modes, whenthe Full/Input Ready flag is HIGH, a memory location is free in the FIFO to receive new data. No memory locations are free when the Full/Input Ready flag is LOW and attempted writes to the FIFO are ignored.

The FullllnputReadyflagofaFIFO is synchronizedtothe portclock thatwrites data to its array (CLKA). Forboth FWFT and IDT Standard modes, eachtime a word is written to aFIFO, its write pointer is incremented. The state machine that controls a Full/Input Ready flag monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is full, full-1, or full-2. Fromthetime a word is readfrom aFIFO, its previous memory location is ready
to be written to in a minimum of two cycles of the Full/Input Ready flag synchronizing clock. Therefore, an Full/Input Ready flag is LOW ifless than two cycles ofthe Full/Input Ready flag synchronizing clockhave elapsedsince the next memory write location has been read. The second LOW-to-HIGH transition on the Full/Input Ready flag synchronizing clock after the read sets the Full/Input Ready flag HIGH.
ALOW-to-HIGHtransition ona Full/Input Readyflag synchronizing clock begins the firstsynchronization cycle of a readif the clock transition occurs at time tSKEW1 orgreater after the read. Otherwise, the subsequent clock cycle can be the first synchronization cycle (see Figures 13 and 14).

ALMOST-EMPTYFLAG($\overline{\text { AE }})$

The Almost-Emptyflag of aFIFO is synchronizedtothe portclockthat reads datafromits array (CLKB). The state machine that controls an AImost-Empty flag monitors a write pointer and read pointer comparator that indicates when the FIFO memorystatus isalmost-empty, almost-empty+1, oralmost-empty+2. The Almost-Emptystate isdefined by the contents of registerX. These registers are loaded with presetvalues during a FIFO reset, programmed from PortA, or programmed serially (see Almost-Empty flag and Almost-Full flag offset programmingsection). An AImost-Emptyflag is LOW when its FIFO contains Xorless words and is HIGH when its FIFO contains (X+1) or more words. Note thatadata word presentinthe FIFO outputregisterhas been readfrom memory.
Two LOW-to-HIGH transitions of the Almost-Emptyflagsynchronizingclock are required after a FIFO write forits Almost-Empty flag to reflect the new level of fill. Therefore, the AImost-Empty flag of a FIFO containing ($\mathrm{X}+1$) or more words remains LOW iftwo cycles of its synchronizing clock have notelapsed since the write thatfilled the memory to the $(\mathrm{X}+1$) level. An Almost-Empty flag is setHIGH by the second LOW-to-HIGH transition of its synchronizingclock after the FIFO write that fills memory to the $(\mathrm{X}+1)$ level. A LOW-to-HIGH transition of an Almost-Emptyflagsynchronizing clockbeginsthefirstsynchronization cycleifitoccurs attimetSKEW2 orgreaterafterthe writethatilllsthe FIFO to $(X+1)$ words. Otherwise, the subsequent synchronizing clock cycle maybe the first synchronization cycle. (See Figure 15).

ALMOST-FULL FLAG ($\overline{\text { AF }}$)

The Almost-Full flag of aFIFO is synchronized to the portclock that writes data toits array. The state machine that controls an Almost-Full flag monitors a write pointer and read pointer comparator that indicates when the FIFO memorystatusisalmost-full, almost-full-1, oralmost-full-2. The Almost-Full state is defined by the contents of registerY. These registers are loaded with preset values during a FIFO reset or, programmed from Port A, or programmed serially (see Almost-Empty flag and Almost-Full flag offset programming section). An Almost-Full flag is LOW when the number of words in its FIFO is greater than or equal to ($16,384-\mathrm{Y}$), $(32,768-\mathrm{Y})$, or ($65,536-\mathrm{Y}$) for the IDT72V3683, IDT72V3693, or IDT72V36103 respectively. An Almost-Full flag is HIGH when the number of words in its FIFO is less than or equal to $[16,384-(\mathrm{Y}+1)],[32,768-(\mathrm{Y}+1)]$, or $[65,536-(\mathrm{Y}+1)]$ for the IDT72V3683, IDT72V3693, or IDT72V36103 respectively. Note that a data word present in the FIFO output register has been read from memory.
TwoLOW-to-HIGHtransitions of the Almost-Full flagsynchronizing clockare required after a FIFO read for its Almost-Full flag to reflect the new level of fill. Therefore, the Almost-Full flag of FIFO containing[16,384/32,768/65,536(Y+1)]orless words remains LOWiftwo cycles of its synchronizing clockhave not elapsed since the read that reduced the number of words in memory to [16,384/32,768/65,536-(Y+1)]. An Almost-Full flagis setHIGH by the second LOW-to-HIGH transition of its synchronizing clock after the FIFO read that reduces the number of words in memory to [16,384/32,768/65,536-(Y+1)]. A LOW-to-HIGHtransition of an Almost-Full flagsynchronizing clockbeginsthe
firstsynchronization cycleifitoccurs attimetSKEW2 orgreater afterthe read that reduces the number of words in memory to [16,384/32,768/65,536-($\mathrm{Y}+1$)]. Otherwise, the subsequent synchronizing clock cycle may be the firstsynchronization cycle (see Figure 16).

MAILBOX REGISTERS

Two 36-bitbypass registers are onthe IDT72V3683/72V3693/72V36103 to pass command and control information between Port A and Port B without putting it in queue. The Mailbox select (MBA, MBB) inputs choose between a mail register and aFIFO for a portdatatransfer operation. The usable width ofboththe Mail1 andMail2 Registers matchesthe selected bus sizeforPortB.
ALOW-to-HIGH transition on CLKA writes datatothe Mail1 Registerwhen a Port A write is selected by $\overline{C S A}, W / \overline{R A}$, and $E N A$ with MBA HIGH. If the selected PortBbussize is 36 bits, the usable width ofthe Mail Registeremploys data lines AO-A35. Ifthe selected PortBbus size is 18bits, thenthe usable width of the Mail1 Register employs data lines A0-A17. (Inthis case, A18-A35 are don't care inputs.) Ifthe selected PortB bus size is 9 bits, then the usable width ofthe Mail1 Registeremploys datalines A0-A8. (Inthiscase, A9-A35 are don't care inputs.)
ALOW-to-HIGHtransition on CLKB writes BO-B35datatothe Mail2 Register when a Port B write is selected by $\overline{C S B}, \bar{W} / R B$, and $E N B$ with MBB HIGH. If the selected Port B bus size is 36 bits, the usable width of the Mail2 employs datalines BO-B35. Ifthe selected PortBbus size is 18bits, thenthe usable width of the Mail2 Register employs data lines B0-B17. (Inthis case, B18-B35 are don't care inputs.) Ifthe selected PortB bus size is 9 bits, then the usable width of the Mail2Registeremploys datalines B0-B8. (Inthiscase, B9-B35 are don't care inputs.)
Writing data to a mail register sets its corresponding flag (MBF1 or MBF2) LOW. Attempted writes to a mail register are ignored whilethe mail flag is LOW.
When data outputs of a portare active, the data on the bus comes from the FIFO output register when the portMailbox selectinputis LOW and from the mail register when the port Mailbox select inputis HIGH.
The Mail1 Register Flag ($\overline{\mathrm{MBF}}$) is setHIGH byaLOW-to-HIGH transition on CLKB when a Port B read is selected by $\overline{C S B}, \bar{W} / R B$, and $E N B$ with MBB HIGH. For a 36 -bit bus size, 36 bits of mailbox data are placed on BO-B35. For an 18 -bit bus size, 18 bits of mailbox data are placed on BO 0 -B17. (In this case, B18-B35 are indeterminate.) Fora9-bitbus size, 9bits of mailbox data are placed on $\mathrm{B} 0-\mathrm{B} 8$. (In this case, $\mathrm{B9}-\mathrm{B} 35$ are indeterminate.)
The Mail2 Register Flag(MBF2) is setHIGH byaLOW-to-HIGHtransition on CLKA when a Port A read is selected by $\overline{C S A}, W / \overline{R A}$, and $E N A$ with MBA HIGH.
For a 36 -bit bus size, 36 bits of mailbox data are placed on AO-A35. For an 18-bitbus size, 18 bits of mailbox dataare placed on A0-A17. (Inthis case, A18-A35 are indeterminate.) For a 9 -bit bus size, 9 bits of mailbox data are placed on A0-A8. (In this case, A9-A35 are indeterminate.)

The datain a mail register remains intactafteritis read and changes only when new data is written to the register. The Endian select feature has no effecton mailboxdata. For mail registerand mail registerflagtimingdiagrams, see Figure 17 and 18.

BUS SIZING

The Port B bus can be configured in a 36 -bit long word, 18 -bit word, or 9bitbyteformatfor data readfromthe FIFO. The levels appliedtothe PortBBus Size select(SIZE) andthe Bus-Matchselect(BM) determinethe PortBbussize. These levels should be static throughout FIFO operation. Both bus size selections are implemented atthe completion of Reset, bythetime the Full/Input Ready flag is set HIGH, as shown in Figure 2.
Two differentmethods forsequencing datatransfer are available forPortB when the bus size selection is either byte-or word-size. They are referred to as Big-Endian (mostsignificantbyte first)and Little-Endian (leastsignificant byte first). The level appliedtothe Big-Endianselect(BE) inputduringthe LOW-toHIGH transition of $\overline{\mathrm{RS} 1}$ selectsthe endian methodthatwill be active during FIFO operation. BE is adon'tcare inputwhenthe bus size selected for PortBis long word. Theendian method isimplementedathe completion of Reset, by the time the Full/Input Ready flag is set HIGH, as shown in Figure 2.
Only 36 -bit long word data is written to or read from the FIFO memory on the IDT72V3683/72V3693/72V36103. Bus-matching operations are done after data is read from the FIFO RAM. These bus-matching operations are not available when transferring data via mailbox registers. Furthermore, both the word- and byte-size bus selections limitthe width of the data bus that can be used for mail register operations. In this case, only those byte lanes belonging to the selected word- or byte-size bus can carry mailbox data. The remaining data outputs will be indeterminate. The remaining data inputs will be don'tcare inputs. For example, when a word-size bus is selected, then mailbox data can be transmitted only between A0-A17 and B0-B17. When a byte-size bus is selected, then mailbox data can be transmitted only between A0-A8 and BOB8. (See Figures 17 and 18).

BUS-MATCHING FIFO READS

Data is read from the FIFO RAM in 36 -bit long word increments. If a long word bus size is implemented, the entire long word immediately shifts to the FIFO output register. If byte or word size is implemented on Port B, only the first one or two bytes appear on the selected portion of the FIFO output register, with the rest of the long word stored in auxiliary registers. In this case, subsequent FIFO reads output the rest of the long word to the FIFO output register in the order shown by Figure 2.
When reading data from FIFO in byte or word format, the unused B0-B35 outputs are indeterminate.

BYTE ORDER ON PORT A:

Write to FIFO

BYTE ORDER ON PORT B:

BE	BM	SIZE
X	L	X

BE	BM	SIZE
H	H	L

 Read from FIFO
(a) LONG WORD SIZE

(b) WORD SIZE - BIG-ENDIAN

BE	BM	SIZE
L	H	L

B26-B18

2nd: Read from FIFO
(c) WORD SIZE — LITTLE-ENDIAN

BE	BM	SIZE
\mathbf{H}	\mathbf{H}	\mathbf{H}

B26-B18

B26-B18

B26-B18

B17-B9

4th: Read from FIFO
(d) BYTE SIZE — BIG-ENDIAN

BE	BM	SIZE
\mathbf{L}	H	H

B17-B9

(e) BYTE SIZE — LITTLE-ENDIAN

Figure 2. Bus sizing

NOTES:

1. $\overline{\text { PRS }}$ must be HIGH during Reset.
2. If $\mathrm{BE} / \overline{\mathrm{FWFT}}$ is HIGH , then $\overline{\mathrm{FF}} / \mathrm{OR}$ will go LOW one CLKB cycle earlier than in this case where BE//FWFT is LOW.

Figure 3. Reset and Loading X and Y with a Preset Value of Eight (IDT Standard and FWFT Modes)

NOTES:

1. $\overline{\mathrm{RS} 1}$ must be HIGH during Partial Reset.
2. If $B E / \overline{F W F T}$ is HIGH , then $\overline{\mathrm{EF}} / \mathrm{OR}$ will go LOW one CLKB cycle earlier than in this case where $B E / \overline{F W F T}$ is $L O W$.

Figure 4. Partial Reset (IDT Standard and FWFT Modes)

NOTE:

1. $\overline{C S A}=L O W, W \overline{R A}=H I G H, M B A=L O W$.

Figure 5. Parallel Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT Modes)

NOTES:

1. It is not necessary to program offset register bits on consecutive clock cycles. FIFO write attempts are ignored until FF/IR is set HIGH.
2. Programmable offsets are written serially to the $S D$ input in the order $\overline{\mathrm{AF}}$ offset (Y) and $\overline{\mathrm{AE}}$ offset (X).

Figure 6. Serial Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT Modes)

Figure 7. Port A Write Cycle Timing for FIFO (IDT Standard and FWFT Modes)

NOTE:

1. Data read from the FIFO

DATA SIZE TABLE FOR FIFO LONG-WORD READS

SIZE MODE (SELECT AT RESET)		DATA WRITTEN TO FIFO				DATA READ FROM FIFO				
BM	SIZE	BE	A35-A27	A26-A18	A17-A9	A8-A0	B35-B27	B26-B18	B17-B9	B8-B0
L	X	X	A	B	C	D	A	B	C	D

NOTE:

1. BE is selected at Reset: BM and SIZE must be static throughout device operation.

Figure 8. Port B Long-Word Read Cycle (IDT Standard and FWFT Modes)

NOTE:

1. Unused word B18-B35 are indeterminate.

DATA SIZE TABLE FOR WORD READS

SIZE MODE ${ }^{(1)}$			DATA WRITTEN TO FIFO 1				$\begin{aligned} & \text { READ } \\ & \text { NO. } \end{aligned}$	DATA READ FROM FIFO	
BM	SIZE	BE	A35-A27	A26-A18	A17-A9	A8-A0		B17-B9	B8-B0
H	L	H	A	B	C	D	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & B \\ & D \end{aligned}$
H	L	L	A	B	C	D	1	$\begin{aligned} & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { B } \end{aligned}$

NOTE:

1. $B E$ is selected at Reset: $B M$ and SIZE must be static throughout device operation.

Figure 9. Port B Word Read Cycle Timing (IDT Standard and FWFT Modes)

NOTE:

1. Unused bytes B9-B17, B18-B26, and B27-B35 are indeterminate.

DATA SIZE TABLE FOR BYTE READS

SIZE MODE $^{(1)}$			DATA WRITTEN TO FIFO				READ	DATA READ FROM FIFO
	BM	SIZE	BE	A35-A27	A26-A18	A17-A9	A8-A0	
H	H							1

NOTE:

1. BE is selected at Reset: BM and SIZE must be static throughout device operation.

Figure 10. Port B Byte Read Cycle Timing (IDT Standard and FWFT Modes)

NOTES:

1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for OR to transition HIGH and to clock the next word to the FIFO output register in three CLKB cycles. If the time between the rising CLKA edge and rising CLKB edge is less than tSKEW1, then the transition of OR HIGH and load of the first word to the output register may occur one CLKB cycle later than shown.
2. If Port B size is word or byte, OR is set LOW by the last word or byte read from the FIFO, respectively.

Figure 11. OR Flag Timing and First Data Word Fall Through when FIFO is Empty (FWFT Mode)

NOTES:

1. tsKEwt is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{E F}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskEw1, then the transition of EF HIGH may occur one CLKB cycle later than shown.
2. If Port B size is word or byte, $\overline{\mathrm{EF}}$ is set LOW by the last word or byte read from the FIFO, respectively.

Figure 12. $\overline{E F}$ Flag Timing and First Data Read when FIFO is Empty (IDT Standard Mode)

NOTES:

1. tSKEw is the minimum time between a rising CLKB edge and a rising CLKA edge for IR to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskEW1, then IR may transition HIGH one CLKA cycle later than shown.
2. If Port B size is word or byte, tskew is referenced to the rising CLKB edge that reads the last word or byte write of the long word, respectively.

Figure 13. IR Flag Timing and First Available Write when FIFO is Full (FWFT Mode)

NOTES:

1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for $\overline{F F}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tSKEw1, then FF may transition HIGH one CLKA cycle later than shown.
2. If Port B size is word or byte, tsKEw1 is referenced from the rising CLKB edge that reads the last word or byte of the long word, respectively.

Figure 14. $\overline{\text { FF }}$ Flag Timing and First Available Write when FIFO is Full (IDT Standard Mode)

NOTES:

1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{AE}}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskew2, then $\overline{\mathrm{AE}}$ may transition HIGH one CLKB cycle later than shown.
2. FIFO Write ($\overline{C S A}=L O W, W / \overline{R A}=L O W, M B A=L O W)$, FIFO read ($\overline{C S B}=L O W, \bar{W} / R B=H I G H, M B B=L O W)$. Data in the FIFO output register has been read from the FIFO.
3. If Port B size is word or byte, $\overline{A E}$ is set LOW by the last word or byte read from the FIFO, respectively.

Figure 15. Timing for $\overline{A E}$ when the FIFO is Almost-Empty (IDT Standard and FWFT Modes).

NOTES:

1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{AF}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tSKEW2, then AF may transition HIGH one CLKA cycle later than shown.
2. FIFO Write ($\overline{C S A}=L O W, W / \overline{R A}=H I G H, M B A=L O W)$, FIFO read ($\overline{C S B}=L O W, \bar{W} / R B=H I G H, M B B=L O W)$. Data in the FIFO output register has been read from the FIFO.
3. $D=$ Maximum FIFO Depth $=16,384$ for the IDT72V3683, 32,768 for the IDT72V3693, 65,536 for the IDT72V36103.
4. If Port B size is word or byte, tsKEW2 is referenced from the rising CLKB edge that reads the last word or byte of the long word, respectively.

Figure 16. Timing for $\overline{A F}$ when the FIFO is Almost-Full (IDT Standard and FWFT Modes).

NOTE:

1. If Port B is configured for word size, data can be written to the Mail1 Register using A0-A17 (A18-A35 are don't care inputs). In this first case B0-B17 will have valid data (B18-B35 will be indeterminate). If Port B is configured for byte size, data can be written to the Mail1 Register using A0-A8 (A9-A35 are don't care inputs). In this second case, B0-B8 will have valid data (B9-B35 will be indeterminate).

Figure 17. Timing for Mail1 Register and $\overline{\text { MBF1 }}$ Flag (IDT Standard and FWFT Modes)

[^0]: NOTE:

 1. Either a HIGH or LOW can be applied to a "don't care" input with no change to the logical operation of the FIFO. Nevertheless, inputs that are temporarily "don't care" (along with unused inputs) must not be left open, rather they must be either HIGH or LOW.
