

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V CMOS 20-BIT FLIP-FLOP WITH 3-STATE OUTPUTS AND BUS-HOLD

IDT74ALVCH16721

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- $Vcc = 2.5V \pm 0.2V$
- CMOS power levels (0.4 w typ. static)
- · Rail-to-Rail output swing for increased noise margin
- Available in TSSOP package

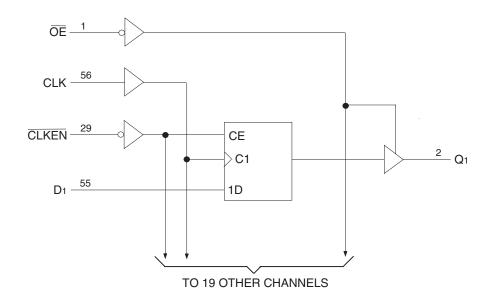
DRIVE FEATURES:

- High Output Drivers: ±24mA
- · Low switching noise

APPLICATIONS:

- · 3.3V high speed systems
- · 3.3V and lower voltage computing systems

DESCRIPTION:

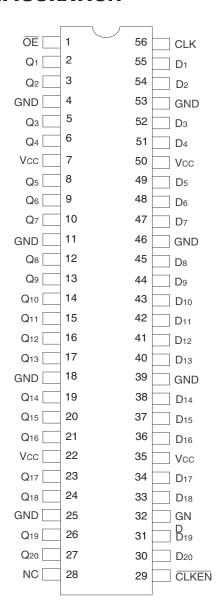

This 20-bit flip-flop is built using advanced dual metal CMOS technology. The 20 flip-flops of the ALVCH16721 are edge-triggered D-type flip-flops with qualified clock storage. On the positive transition of the clock (CLK) input, the device provides true data at the Q outputs if the clock-enable ($\overline{\text{CLKEN}}$) input is low. If $\overline{\text{CLKEN}}$ is high, no data is stored.

A buffered output-enable (\overline{OE}) input places the 20 outputs in either a normal logic state (high or low) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components. \overline{OE} does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The ALVCH16721 has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The ALVCH16721 has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistor.

FUNCTIONAL BLOCK DIAGRAM



IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

JULY 2009

PIN CONFIGURATION

TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	٧
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	٧
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lıĸ	Continuous Clamp Current, VI < 0 or VI > VCC	±50	mA
Іок	Continuous Clamp Current, Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	7	pF
Соит	Output Capacitance	Vout = 0V	7	9	pF
CI/O	I/O Port Capacitance	VIN = 0V	7	9	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description	
ŌĒ	3-State Output Enable Input (Active LOW)	
Dx	Data Inputs ⁽¹⁾	
Qx	3-State Outputs	
CLK	Clock Input	
CLKEN	Clock Enable Input (Active LOW)	
NC	No Internal Connection	

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE (EACH FLIP-FLOP)(1)

	Output			
ŌĒ	CLKEN	CLK	Dx	Qx
L	Н	Х	Х	Q ₀ ⁽²⁾
L	L	↑	Н	Н
L	L	↑	L	L
L	L	L or H	Х	Q ₀ ⁽²⁾
Н	Х	Х	Х	Z

NOTES:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High Impedance
 - ↑ = LOW-to-HIGH transition
- 2. Output level before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Co	nditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V			_	0.7	V
		Vcc = 2.7V to 3.6V			_	0.8	
lін	Input HIGH Current	Vcc = 3.6V	VI = VCC	_	_	±5	μА
lıL	Input LOW Current	Vcc = 3.6V	Vı = GND	_	_	±5	μА
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc		_	±10	μA
lozl	(3-State Output pins)		Vo = GND	_	_	±10	
Vık	Clamp Diode Voltage	VCC = 2.3V, IIN = -18mA		<u> </u>	-0.7	-1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		T -	100	_	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	Vcc = 3.6V VIN = GND or Vcc			0.1	40	μА
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other	inputs at Vcc or GND	_	_	750	μА

NOTE:

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3V	VI = 2V	-75	_	_	μΑ
IBHL			VI = 0.8V	75	_		
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	-45	_	_	μA
IBHL			VI = 0.7V	45	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	±500	μA
IBHLO							

NOTES:

- 1. Pins with Bus-Hold are identified in the pin description.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.

^{1.} Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Con	ditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc-0.2	_	٧
		Vcc = 2.3V	IOH = -6mA	2	_	
		Vcc = 2.3V	Iон = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V		2.4	_	
		Vcc = 3V	Iон = - 24mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA		0.2	V
		Vcc = 2.3V	IoL = 6mA	-	0.4	
			IoL = 12mA		0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3V	IOL = 24mA	_	0.55	

NOTE:

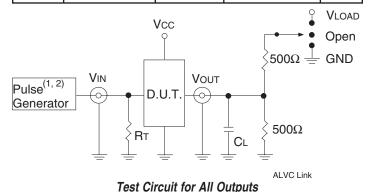
OPERATING CHARACTERISTICS, TA = 25°C

			Vcc = 2.5V ± 0.2V	$Vcc = 3.3V \pm 0.3V$	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
CPD	Power Dissipation Capacitance Outputs enabled	CL = 0pF, f = 10Mhz	55	59	pF
CPD	Power Dissipation Capacitance Outputs disabled		46	49	

SWITCHING CHARACTERISTICS(1)

		Vcc = 2.	5V ± 0.2V	Vcc	= 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
fMAX		150	_	150	_	150	_	MHz
t PLH	Propagation Delay	1	5.6	1	5.1	1	4.3	ns
tPHL	CLK to Qx							
tpzh	Output Enable Time	1	6.1	1	5.8	1	4.8	ns
tpzl	OE to Qx							
tphz	Output Disable Time	1	5.5	1	4.7	1	4.4	ns
tPLZ	OE to Qx							
tsu	Set-up Time, data before CLK↑	4	_	3.6	-	3.1	_	ns
tsu	Set-up Time, CLKEN before CLK↑	3.4	_	3.1	_	2.7	_	ns
tH	Hold Time, data after CLK↑	0	_	0	_	0	_	ns
tH	Hold Time, CLKEN after CLK↑	0		0	_	0		ns
tw	Pulse Width, CLK HIGH or LOW	3.3	_	3.3	_	3.3	-	ns
tsk(o)	Output Skew ⁽²⁾	_	_	_	_	_	500	ps

NOTES:


- 1. See TEST CIRCUITS AND WAVEFORMS. $TA = -40^{\circ}C$ to $+85^{\circ}C$.
- 2. Skew between any two outputs of the same package and switching in the same direction.

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range.

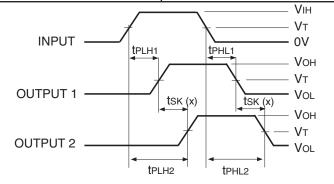
TA = - 40°C to + 85°C.

TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
VIH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc / 2	٧
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

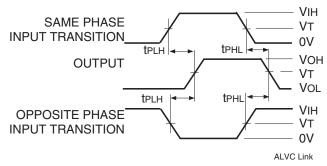

RT = Termination resistance: should be equal to Zout of the Pulse Generator.

NOTES:

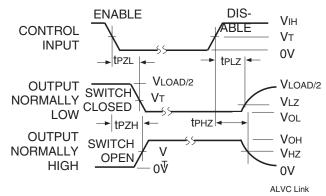
- 1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

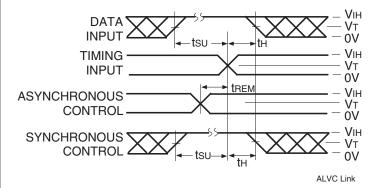

tsk(x) = |tplh2 - tplh1| or tphl2 - tphl1

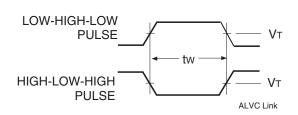
ALVC Link


Output Skew - tsk(x)

NOTES:

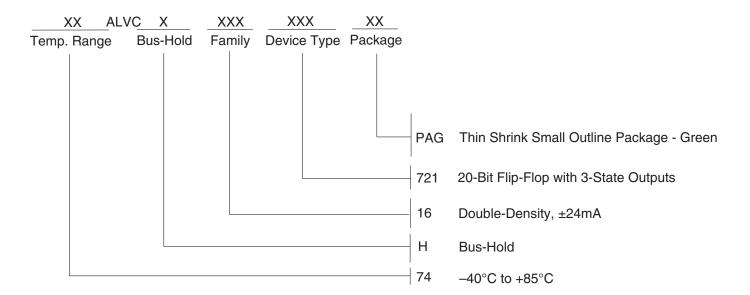
- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


Propagation Delay


Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Set-up, Hold, and Release Times

Pulse Width

ORDERING INFORMATION

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES:

800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: logichelp@idt.com