imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V CMOS 18-BIT UNIVERSAL *IDT74ALVCHR16601* BUS TRANSCEIVER WITH 3-STATE OUTPUTS AND BUS-HOLD

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tSK(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- Vcc = 2.5V ± 0.2V
- CMOS power levels (0.4µ W typ. static)
- · Rail-to-Rail output swing for increased noise margin
- Available in TSSOP package

DRIVE FEATURES:

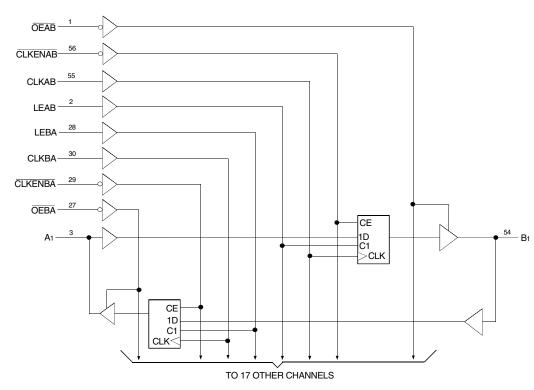
- Balanced Output Drivers: ±12mA
- Low Switching Noise

APPLICATIONS:

- 3.3V high speed systems
- 3.3V and lower voltage computing systems

DESCRIPTION:

This 18-bit universal bus transceiver is built using advanced dual metal CMOS technology. The transceiver combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

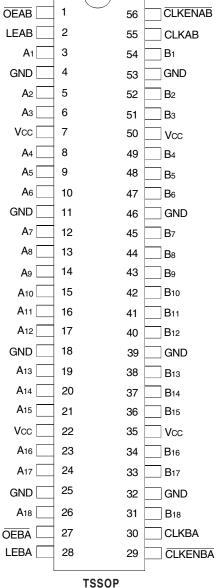

Data flow in each direction is controlled by output-enable (\overline{OEAB} and \overline{OEBA}), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable ($\overline{CLKENAB}$ and $\overline{CLKENBA}$) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. Output enable \overline{OEAB} is active low. When \overline{OEAB} is low, the outputs are active. When \overline{OEAB} is high, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, CLKBA and CLKENBA.

The ALVCHR16601 has series resistors in the device output structure which will significantly reduce line noise when used with light loads. This driver has been designed to drive ±12mA at the designated threshold levels.

The ALVCHR16601 has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

FUNCTIONAL BLOCK DIAGRAM


The IDT logo is a registered trademark of Integrated Device Technology, Inc.

© 2004 Integrated Device Technology, Inc.

IDT74ALVCHR16601 3.3V CMOS 18-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS

INDUSTRIAL TEMPERATURE RANGE

PIN CONFIGURATION

TOP VIEW

PIN DESCRIPTION

Pin Names	Description	
OEAB	A-to-B Output Enable Input (Active LOW)	
OEBA	B-to-A Output Enable Input (Active LOW)	
LEAB	A-to-B Latch Enable Input	
LEBA	B-to-A Latch Enable Input	
CLKAB	A-to-B Clock Input	
CLKBA	B-to-A Clock Input	
Ax	A-to-B Data Inputs or B-to-A 3-State Outputs ⁽¹⁾	
Bx	B-to-A Data Inputs or A-to-B 3-State Outputs ⁽¹⁾	
CLKENAB	A-to-B Clock Enable Input (Active LOW)	
CLKENBA	B-to-A Clock Enable Input (Active LOW)	

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
Ιουτ	DC Output Current	-50 to +50	mA
lıк	Continuous Clamp Current, VI < 0 or VI > Vcc	±50	mA
Іок	Continuous Clamp Current, Vo < 0	50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	7	pF
Соит	Output Capacitance	Vout = 0V	7	9	pF
CI/O	I/O Port Capacitance	VIN = 0V	7	9	pF

NOTE:

1. As applicable to the device type.

FUNCTION TABLE^(1,2)

	Inputs					
CLKENAB	OEAB	LEAB	CLKAB	Ax	Bx	
Х	Н	Х	Х	Х	Z	
Х	L	Н	Х	L	L	
Х	L	Н	Х	Н	Н	
Н	L	L	Х	Х	B ⁽³⁾	
L	L	L	\uparrow	L	L	
L	L	L	\uparrow	Н	Н	
L	L	L	L or H	Х	B ⁽³⁾	

NOTES:

 A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA, LEBA, CLKBA, and CLKENBA.

2. H = HIGH Voltage Level

- L = LOW Voltage Level
- X = Don't Care
- Z = High Impedance
- \uparrow = LOW-to-HIGH transition

3. Output level before the indicated steady-state input conditions were established.

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Co	nditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	—	V
		Vcc = 2.7V to 3.6V		2	-	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V			-	0.7	V
		Vcc = 2.7V to 3.6V		—	—	0.8	
Іін	Input HIGH Current	Vcc = 3.6V	VI = VCC	—	_	±5	μA
lı∟	Input LOW Current	Vcc = 3.6V	VI = GND	_	-	±5	μA
Іоzн	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc		_	±10	μA
Iozl	(3-State Output pins)		Vo = GND		_	±10	
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
νн	Input Hysteresis	Vcc = 3.3V			100	_	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	Vcc = 3.6V VIN = GND or Vcc		-	0.1	40	μA
Alcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other i	nputs at Vcc or GND	-	-	750	μA

NOTE:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Co	nditions	Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3V	VI = 2V	-75	_	—	μA
IBHL			VI = 0.8V	75	_	-	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	-45	_	_	μA
IBHL			VI = 0.7V	45	—	—	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	—	—	±500	μA
Ibhlo							

NOTES:

1. Pins with Bus-Hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc-0.2	—	V
		Vcc = 2.3V	Iон = - 4mA	1.9	—	
			Iон = - 6mA	1.7	—	
		Vcc = 2.7V	Iон = - 4mA	2.2	—	
			Iон = - 8mA	2	—	
		Vcc = 3V	Iон = - 6mA	2.4	—	
			Iон = - 12mA	2	—	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IOL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IOL = 4mA	—	0.4	
			IOL = 6mA	—	0.55	
		Vcc = 2.7V	IOL = 4mA	—	0.4	
			IOL = 8mA	—	0.6	
		Vcc = 3V	IOL = 6mA	—	0.55	
			IOL = 12mA	_	0.8	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C.

OPERATING CHARACTERISTICS, TA = 25°C

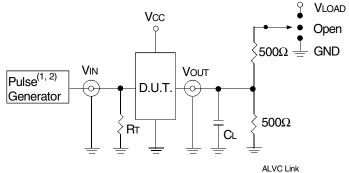
			Vcc = 2.5V ± 0.2V	$Vcc = 3.3V \pm 0.3V$	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
CPD	Power Dissipation Capacitance Outputs enabled	CL = 0pF, f = 10Mhz	56	63	рF
Cpd	Power Dissipation Capacitance Outputs disabled		12	13	

SWITCHING CHARACTERISTICS⁽¹⁾

		Vcc = 2.	5V ± 0.2V	Vcc	= 2.7V	Vcc = 3.3	3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
fMAX		150	_	150	_	150	- 1	MHz
t₽LH	Propagation Delay	1	4.8	_	5.1	1	4.4	ns
t PHL	Ax to Bx or Bx to Ax							
tPLH	Propagation Delay	1	5.5	_	5.8	1	5.1	ns
t PHL	LEAB to Bx or LEBA to Ax							
tPLH	Propagation Delay	1.2	5.9	_	6.3	1.4	5.4	ns
t PHL	CLKAB to Bx or CLKBA to Ax							
tPZH	Output Enable Time	1.1	6.3	_	6.6	1.1	5.6	ns
tPZL	OEAB to Bx or OEBA to Ax							
tPZH	Output Disable Time	1	4.2	_	5.1	1.6	4.7	ns
tPZL	OEAB to Bx or OEBA to Ax							
ts∪	Set-up Time, data before CLK↑	2.3	_	2.4	_	2.1	-	ns
ts∪	Set-up Time, data before LE \downarrow , CLK HIGH	2	_	1.6	_	1.6	-	ns
tsu	Set-up Time, data before LE \downarrow , CLK LOW	1.3	_	1.2	_	1.1	-	ns
ts∪	Set-up Time, CLKEN before CLK↑	2	_	2	_	1.7	-	ns
tΗ	Hold Time, data after CLK \uparrow	0.7	_	0.7	_	0.8	-	ns
tΗ	Hold Time, data after LE \downarrow , CLK HIGH	1.3	_	1.6	_	1.4	-	ns
tΗ	Hold Time, data after LE \downarrow , CLK LOW	1.7	_	2	_	1.7	-	ns
tΗ	Hold Time, CLKEN after CLK1	0.3	_	0.5	_	0.6	- 1	ns
tw	Pulse Width, LE HIGH	3.3	_	3.3	_	3.3	-	ns
tw	Pulse Width, CLK HIGH or LOW	3.3	_	3.3	_	3.3	-	ns
tsk(0)	Output Skew ⁽²⁾	- 1	_	—	_	-	500	ps

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to $+85^{\circ}$ C.


2. Skew between any two outputs of the same package and switching in the same direction.

IDT74ALVCHR16601 3.3V CMOS 18-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS

INDUSTRIAL TEMPERATURE RANGE

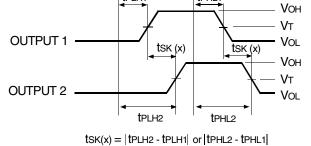
TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
Vload	6	6	2 x Vcc	V
Vih	2.7	2.7	Vcc	V
Vτ	1.5	1.5	Vcc / 2	V
Vlz	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

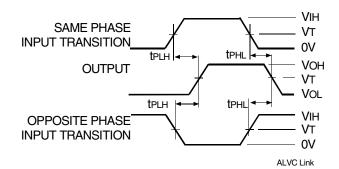
CL = Load capacitance: includes jig and probe capacitance.

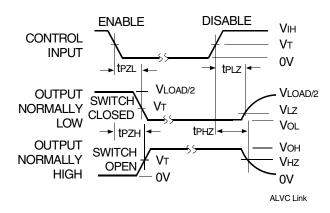

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns. 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2ns; tR \leq 2ns.

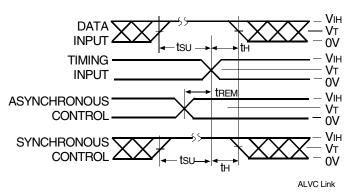
SWITCH POSITION

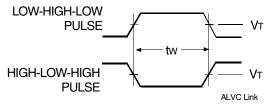

Test	Switch
Open Drain Disable Low Enable Low	VLOAD
Disable High Enable High	GND
All Other Tests	Open
	Vін Vт оу



Output Skew - tsκ(x)

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

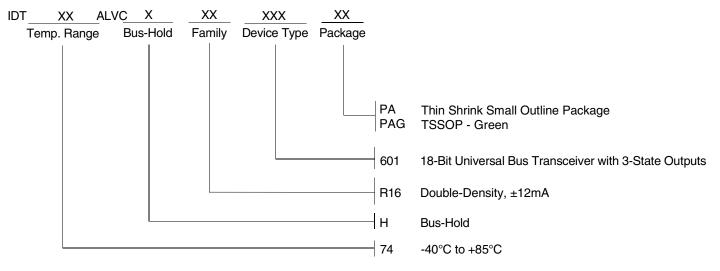




Enable and Disable Times

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Set-up, Hold, and Release Times



Pulse Width

ALVC Link

NOTE:

ORDERING INFORMATION

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138

for SALES:

800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: logichelp@idt.com