imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

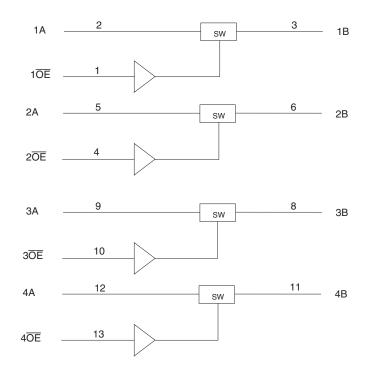
LOW-VOLTAGE QUADRUPLE BUS SWITCH

IDT74CBTLV3126

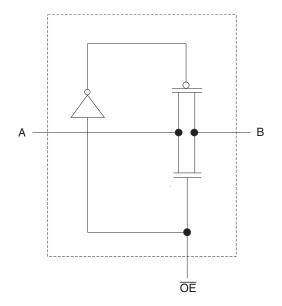
FEATURES:

- Pin-out compatible with standard '126 Logic products
- 5Ω A/B bi-directional switch
- · Isolation under power-off conditions
- Over-voltage tolerant
- · Latch-up performance exceeds 100mA
- Vcc = 2.3V 3.6V, Normal Range
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- · Output enable, active high
- Available in QSOP and TSSOP packages

APPLICATIONS:


• 3.3V High Speed Bus Switching and Bus Isolation

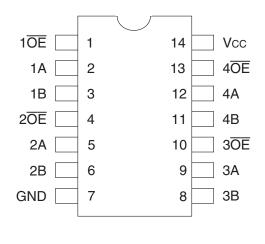
DESCRIPTION:


The CBTLV3126 features four independent switches. Each switch is enabled when the associated output-enable (\overline{OE}) input is high.

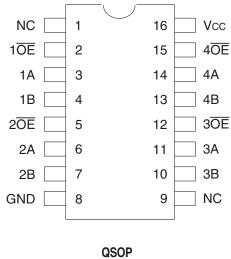
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTIONAL BLOCK DIAGRAM

SIMPLIFIED SCHEMATIC, EACH SWITCH


NOTE:

1. Pin numbers shown apply to the 14-pin TSSOP package.


The IDT logo is a registered trademark of Integrated Device Technology, Inc.

JULY 2008

PIN CONFIGURATION

TSSOP TOP VIEW

TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
Vcc	SupplyVoltage Range	-0.5 to +4.6	
VI	Input Voltage Range	-0.5 to +4.6	V
	Continuous Channel Current	128	mA
Ік	Input Clamp Current, VI/O < 0	50	mA
Tstg	Storage Temperature	-65 to +150	°C

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

FUNCTION TABLE⁽¹⁾

Input OE	Inputs/Outputs
Н	A Port = B Port
L	Disconnect

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

OPERATING CHARACTERISTICS, $T_A = 25 \degree C^{(1)}$)
---	---

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage		2.3	3.6	V
Vih	High-Level Control Input Voltage	Vcc = 2.3V to 2.7V	1.7	_	V
		Vcc = 2.7V to 3.6V	2	—	
VIL	Low-Level Control Input Voltage	Vcc = 2.3V to 2.7V	—	0.7	V
		Vcc = 2.7V to 3.6V	—	0.8	
TA	Operating Free-Air Temperature		-40	85	°C

NOTE:

1. All unused control inputs of the device must be held at Vcc or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Conditions: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Cor	Test Conditions		Typ. ⁽¹⁾	Max.	Unit
Vik	Control Inputs, Data Inputs	Vcc = 3V, II = -18mA		—	—	-1.2	V
li	Control Inputs	Vcc = 3.6V, VI = Vcc or GND		—	—	±1	μA
loz	Data I/O	Vcc = 3.6V, Vo = 0 or 3.6V, sw	itch disabled	- 1	-	5	μA
IOFF		Vcc = 0, VI or Vo = 0 to 3.6V		- 1	-	50	μA
Icc		Vcc = 3.6V, Io = 0, VI = Vcc c	Vcc = 3.6V, Io = 0, VI = Vcc or GND		—	10	μA
$\Delta ICC^{(2)}$	Control Inputs	Vcc = 3.6V, one input at 3V, oth	Vcc = 3.6V, one input at 3V, other inputs at Vcc or GND		_	300	μA
Сі	Control Inputs	VI = 3V or 0	VI = 3V or 0		4	_	pF
CIO(OFF)		Vo = 3V or 0, OE = Vcc	Vo = 3V or 0, OE = Vcc		6	_	рF
	Vcc = 2.3V	VI = 0	IO = 64mA	<u> </u>	5	8	
	Typ. at Vcc = 2.5V		lo = 24mA	—	5	8	
Ron ⁽³⁾		VI = 1.7V	lo = 15mA	-	27	40	Ω
		VI = 0	lo = 64mA	-	5	7	
	Vcc = 3V		lo = 24mA	—	5	7	1
		VI = 2.4V	lo = 15mA	-	10	15	

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

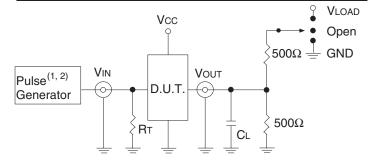
2. The increase in supply current is attributable to each current that is at the specified voltage level rather than Vcc or GND.

3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

SWITCHING CHARACTERISTICS

		$Vcc = 2.5V \pm 0.2V$		Vcc = 3.3V ± 0.3V		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tPD ⁽¹⁾	Propagation Delay	-	0.15	-	0.25	ns
	A to B or B to A					
ten	Output Enable Time	1	4.5	1	4.2	ns
	OE to A or B					
tois	Output Disable Time	1	4.7	1	4.8	ns
	OE to A or B					

NOTE:


1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance driven by an ideal voltage source (zero output impedance).

IDT74CBTLV3126 LOW-VOLTAGEQUADRUPLEBUSSWITCH

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

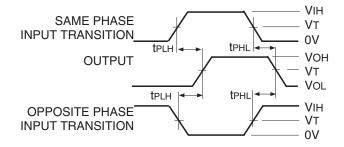
Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	2 x Vcc	V
Vih	3	Vcc	V
Vτ	1.5	Vcc / 2	V
Vlz	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

Test Circuits for All Outputs

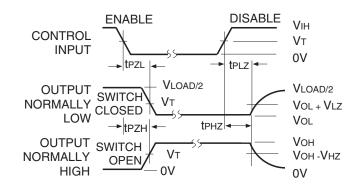
DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

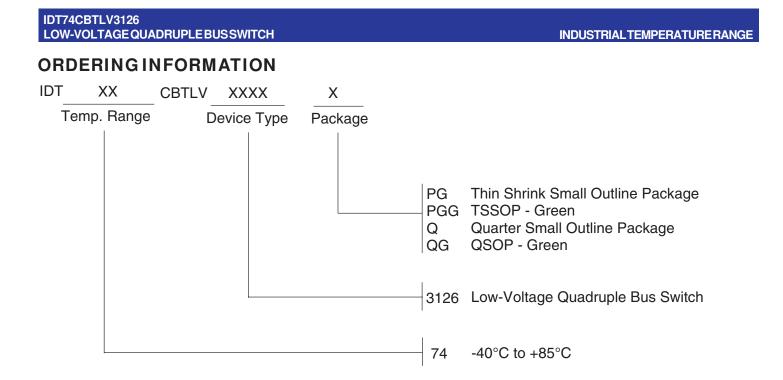
RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.


NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2.5ns.


SWITCH POSITION

Test	Switch
tplz/tpzL	Vload
tphz/tpzh	GND
tPD	Open


INDUSTRIAL TEMPERATURE RANGE

Enable and Disable Times

DATASHEET DOCUMENT HISTORY

07/14/2008

pg. 1.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138

for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: logichelp@idt.com