: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES:

- 0.5 MICRON CMOS Technology
- High-speed, low-power CMOS replacement for ABT functions
- Typical tSK(o) (Output Skew) < 250ps
- Low input and output leakage $\leq 1 \mu \mathrm{~A}$ (max.)
- ESD > 2000V per MIL-STD-883, Method 3015; > 200 V using machine model ($C=200 \mathrm{pF}, \mathrm{R}=0$)
- Vcc = 5V $\pm 10 \%$
- High drive outputs (-32 mA IOH, 64 mA IOL)
- Power off disable outputs permit "live insertion"
- Typical Volp (Output Ground Bounce) $<1.0 \mathrm{~V}$ at Vcc $=5 \mathrm{~V}$, $\mathrm{TA}=25^{\circ} \mathrm{C}$
- Available in SSOP package

DESCRIPTION:

The FCT16500T 18-bit registered transceivers are built using advanced dual metal CMOStechnology. These high-speed, low-power 18-bitregistered bustransceivers combineD-type latches and D-typeflip-flopsto allow dataflow in transparent, latched and clocked modes. Data flow in each direction is controlled by output-enable(OEAB and $\overline{\mathrm{OEBA}})$, latch enable (LEAB and LEBA) andclock ($\overline{C L K A B}$ and $\overline{C L K B A}$)inputs. ForA-to-Bdataflow, the deviceoperates intransparentmode whenLEAB ishigh. WhenLEAB islow, the A dataislatched if $\overline{C L K A B}$ isheld atahigh orlowlogic level. IfLEAB is low, the A bus datais stored inthe latch/flip-flop on the high-to-low transition of $\overline{C L K A B}$. OEAB performs the outputenable function ontheBport. Data flow fromB portto A portis similarbut uses $\overline{\mathrm{OEBA}}, \mathrm{LEBA}$ and $\overline{\mathrm{CLKBA}}$. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

The FCT16500T are ideally suited for driving high-capacitance loads and low-impedance backplanes. The output buffers are designed with power off disable capability to allow "live insertion" of boards when used as backplane drivers.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

SSOP
TOP VIEW

PIN DESCRIPTION

Pin Names	Description
OEAB	A-to-B OutputEnable Input
$\bar{O} \bar{E} \bar{B} \bar{A}$	B-to-A Output Enable Input(Active LOW)
LEAB	A-to-B Latch Enable Input
LEBA	B-to-A Latch Enable Input
$\overline{\text { CLKAB }}$	A-to-B Clock Input (Active LOW)
$\overline{\text { CLKBA }}$	B-to-A Clock Input (Active LOW)
$A x$	A-to-BData Inputs orB-to-A3-State Outputs
Bx	B-to-AData Inputs orA-to-B3-State Outputs

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to 7	V
VTERM $^{(3)}$	Terminal Voltage with Respect to GND	-0.5 to $\mathrm{VCC}+0.5$	V
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
IOUT	DC Output Current	-60 to +120	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. All device terminals except FCT162XXX Output and I/O terminals.
3. Output and I/O terminals for FCT162XXX.

CAPACITANCE $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Typ.	Max.	Unit
CIN	Input Capacitance	VIN $=0 \mathrm{~V}$	3.5	6	pF
COUT	Output Capacitance	VOUT $=0 \mathrm{~V}$	3.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

FUNCTION TABLE(1,4)

Inputs				Outputs
OEAB	LEAB	$\overline{\text { CLKAB }}$	Ax	Bx
L	X	X	X	Z
H	H	X	L	L
H	H	X	H	H
H	L	\downarrow	L	L
H	L	\downarrow	H	H
H	L	H	X	$\mathrm{B}^{(2)}$
H	L	L	X	$\mathrm{B}^{(3)}$

NOTES:

1. A-to-B data flow is shown. B-to-A data flow is similar but uses $\overline{O E B A}$, LEBA, and CLKBA.
2. Output level before the indicated steady-state input conditions were established.
3. Output level before the indicated steady-state input conditions were established, provided that CLKAB was LOW before LEAB went LOW.
4. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
X = Don't Care
Z = High-impedance
$\downarrow=$ HIGH-to-LOW Transition

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level		2	-	-	V
VIL	InputLOW Level	GuaranteedLogic LOW Level		-	-	0.8	V
lH	Input HIGH Current(Inputpins) ${ }^{(5)}$	$\mathrm{Vcc}=$ Max.	$\mathrm{VI}=\mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
	Input HIGH Current (I/O pins) ${ }^{(5)}$			-	-	± 1	
IIL	InputLOWCurrent(Inputpins) ${ }^{(5)}$		$\mathrm{VI}=\mathrm{GND}$	-	-	± 1	
	InputLOWCurrent (//Opins) ${ }^{(5)}$			-	-	± 1	
IozH	High Impedance OutputCurrent (3-StateOutputpins) ${ }^{(5)}$	$\mathrm{Vcc}=$ Max.	$\mathrm{Vo}=2.7 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
Iozl			$\mathrm{Vo}=0.5 \mathrm{~V}$	-	-	± 1	
VIK	Clamp Diode Voltage	VCC = Min., IIN = - 18 mA		-	-0.7	-1.2	V
los	ShortCircuitCurrent	$\mathrm{Vcc}=$ Max., $\mathrm{Vo}=\mathrm{GND}^{(3)}$		-80	-140	-250	mA
VH	Input Hysteresis	-		-	100	-	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	$\begin{aligned} & \text { VCC = Max. } \\ & \text { VIN = GND or VCC } \end{aligned}$		-	5	500	$\mu \mathrm{A}$

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
10	OutputDrive Current	$\mathrm{Vcc}=$ Max., Vo $=2.5 \mathrm{~V} \mathrm{~V}^{(3)}$		-50	-	-180	mA
VoH	Output HIGH Voltage	$\begin{aligned} & \text { VCC }=\text { Min. } \\ & \text { VIN }=\text { VIH or VIL } \end{aligned}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.5	3.5	-	V
			$1 \mathrm{OH}=-15 \mathrm{~mA}$	2.4	3.5	-	
			$\mathrm{IOH}=-32 \mathrm{~mA}{ }^{(4)}$	2	3	-	
VoL	OutputLOW Voltage	$\begin{aligned} & \text { VCC = Min. } \\ & \text { VIN = VIH or VIL } \end{aligned}$	$\mathrm{IOL}=64 \mathrm{~mA}$	-	0.2	0.55	V
IofF	Input/OutputPowerOffLeakage ${ }^{(5)}$	Vcc $=0 \mathrm{~V}$, VIN or Vo $\leq 4.5 \mathrm{~V}$		-	-	± 1	$\mu \mathrm{A}$

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Not more than one output should be shorted at one time. vuraturn or tie test snoura not exceea one second.
4. Duration of the condition can not exceed one second.
5. This test limit for this parameter is $\pm 5 \mu \mathrm{~A}$ at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
$\Delta \mathrm{lc}$	Quiescent Power Supply Current TTL Inputs HIGH	$\begin{aligned} & \hline \mathrm{VCC}=\mathrm{Max} . \\ & \mathrm{VIN}=3.4 \mathrm{~V}^{(3)} \end{aligned}$		-	0.5	1.5	mA
ICCD	Dynamic Power Supply Current ${ }^{(4)}$	Vcc = Max., Outputs Open $\mathrm{OEAB}=\overline{\mathrm{OEBA}}=\mathrm{Vcc}$ or GND OneInputToggling 50\% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	75	120	$\begin{aligned} & \mu \mathrm{Al} \\ & \mathrm{MHz} \end{aligned}$
IC	Total PowerSupply Current ${ }^{(6)}$	Vcc = Max., Outputs Open $\mathrm{fCP}=10 \mathrm{MHz}(\overline{\mathrm{CLKAB}})$ 50\% Duty Cycle $O E A B=\overline{O E B A}=V C C$ LEAB = GND OneBitToggling $\mathrm{fi}=5 \mathrm{MHz}$ 50\% Duty Cycle Vcc = Max., Outputs Open $\mathrm{fCP}=10 \mathrm{MHz}(\overline{\mathrm{CLKAB}})$ 50\% Duty Cycle $\begin{aligned} & \mathrm{OEAB}=\overline{\mathrm{OEBA}}=\mathrm{VCC} \\ & \mathrm{LEAB}=\mathrm{GND} \end{aligned}$ EighteenBits Toggling $\mathrm{fi}=2.5 \mathrm{MHz}$ 50\% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$ $\begin{aligned} & \mathrm{VIN}=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$ $\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$ $\begin{aligned} & \mathrm{VIN}=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	- - - -	0.8 1.3 3.8 8.5	1.7	mA

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input ($\mathrm{VIN}=3.4 \mathrm{~V}$). All other inputs at Vcc or GND.
4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
6. IC $=$ IQUIESCENT + IINPUTS + IDYNAMIC

IC $=\mathrm{IcC}+\Delta \mathrm{ICC}$ DHNT $+\mathrm{ICCD}(\mathrm{fcPNCP} / 2+\mathrm{fiNi})$
ICC = Quiescent Current (Iccl, Icch and Iccz)
$\Delta I c c=$ Power Supply Current for a TTL High Input (VIN $=3.4 \mathrm{~V}$)
DH = Duty Cycle for TTL Inputs High
NT = Number of TTL Inputs at DH
ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
fcP = Clock Frequency for Register Devices (Zero for Non-Register Devices)
NCP = Number of Clock Inputs at fcP
$\mathrm{f}_{\mathrm{i}}=$ Input Frequency
$\mathrm{Ni}=$ Number of Inputs at fi

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter		Condition ${ }^{(1)}$	FCT16500AT		FCT16500CT		Unit	
			Min. ${ }^{(2)}$	Max.	Min. ${ }^{(2)}$	Max.			
fmax	$\overline{\text { CLKAB }}$ or $\overline{\text { CLKBA }}$ frequency ${ }^{(3)}$			$\begin{aligned} & C L=50 \mathrm{pF} \\ & \mathrm{RL}=500 \Omega \end{aligned}$	-	150	-	150	MHz
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	PropagationDelay Ax to Bx or Bx to Ax		1.5		5.1	1.5	3.8	ns	
tPLH tpHL	PropagationDelay LEBA to Ax, LEAB to Bx		1.5		5.6	1.5	4.2	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPH } \end{aligned}$	Propagation Delay $\overline{C L K B A}$ to $A x, \overline{C L K A B}$ to $B x$		1.5		5.6	1.5	4.4	ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	OutputEnable Time $\overline{O E B A}$ to $A x, O E A B$ to $B x$		1.5		6	1.5	4.8	ns	
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	OutputDisable Time $\overline{\text { OEBA }}$ to Ax, OEAB to Bx		1.5		5.6	1.5	4.4	ns	
tSU	Set-up Time, HIGH or LOW Ax to $\overline{\text { CLKAB }}, \mathrm{Bx}$ to $\overline{\mathrm{CLKBA}}$		3		-	2.4	-	ns	
H	Hold Time, HIGH or LOW Ax to $\overline{\text { CLKAB }}, \mathrm{Bx}$ to $\overline{\mathrm{CLKBA}}$		0		-	0	-	ns	
tsu	Set-up Time HIGH or LOW Ax to LEAB, Bx to LEBA	Clock HIGH	3		-	2	-	ns	
		Clock LOW	1.5		-	1.5	-		
H	Hold Time, HIGH or LOW Ax to LEAB, Bx to LEBA		1.5		-	0.5	-	ns	
tw	LEAB or LEBA Pulse Width HIGH ${ }^{(3)}$		3		-	3	-	ns	
tw	$\overline{\mathrm{CLKAB}}$ or $\overline{\mathrm{CLKBA}}$ Pulse Width, HIGH or LOW ${ }^{(3)}$		3		-	3	-	ns	
tSk(0)	OutputSkew ${ }^{(4)}$		-		0.5	-	0.5	ns	

NOTES:

1. See test circuits and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.
3. This parameter is guaranteed but not tested.
4. Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

TEST CIRCUITS AND WAVEFORMS

Test Circuits for All Outputs

Set-up, Hold, and Release Times

Propagation Delay

SWITCH POSITION

Test	Switch
Open Drain	
Disable Low	
Enable Low	Closed
All Other Tests	Open

DEFINITIONS:
CL = Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

Pulse Width

Enable and Disable Times

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz}$; $\mathrm{tF} \leq 2.5 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$.

ORDERING INFORMATION

Datasheet Document History

09/28/09 Pg. $7 \quad$ Updated the ordering information by removing the "IDT" notation and non RoHS part.

for SALES:

800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
for Tech Support:
logichelp@idt.com

