mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

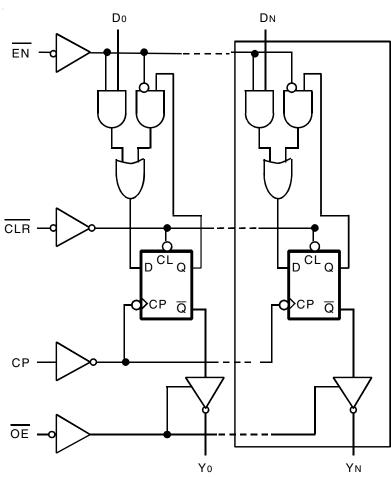
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HIGH-PERFORMANCE CMOS BUS INTERFACE REGISTER

IDT74FCT823AT/CT

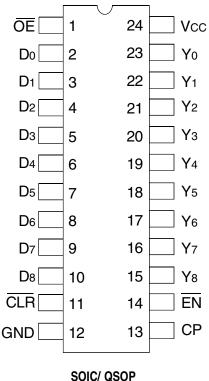
FEATURES:


- A and C grades
- Low input and output leakage ≤1µA (max.)
- CMOS power levels
- True TTL input and output compatibility:
 - VOH = 3.3V (typ.)
 - VOL = 0.3V (typ.)
- High Drive outputs (-15mA IOH, 48mA IOL)
- Meets or exceeds JEDEC standard 18 specifications
- Power off disable outputs permit "live insertion"
- · Available in the SOIC and QSOP packages

DESCRIPTION:

The FCT823T series is built using an advanced dual metal CMOS technology. The FCT823T series bus interface registers are designed to eliminate the extra packages required to buffer existing registers and provide extra data width for wider address/data paths or buses carrying parity. The FCT823T is a 9-bit wide buffered register with Clock Enable (\overline{EN}) and Clear (\overline{CLR}) – ideal for parity bus interfacing in high-performance microprogrammed systems.

The FCT823T high-performance interface family can drive large capacitive loads, while providing low-capacitance bus loading at both inputs and outputs. All inputs have clamp diodes and all outputs are designed for low-capacitance bus loading in high-impedance state.


FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

February 19, 2009

PIN CONFIGURATION

TOP VIEW

INDUSTRIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	–0.5 to +7	٧
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	٧
TSTG	Storage Temperature	-65 to +150	°C
Ιουτ	DC Output Current	-60 to +120	mA

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.

2. Inputs and Vcc terminals only.

3. Output and I/O terminals only.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	10	pF
Соит	Output Capacitance	Vout = 0V	8	12	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	I/O	Description	
Dx	-	D Flip-Flop Data Inputs	
CLR	Ι	When the clear input is LOW and $\overline{\text{OE}}$ is LOW, the Qx outputs are LOW. When the clear input is HIGH, data can be entered into the register.	
СР	-	Clock Pulse for the Register; enters data into the register on the LOW-to-HIGH transition.	
Yх	0	Register 3-State Outputs	
ĒN	I	Clock Enable. When the clock enable is LOW, data on the Dx output is transferred to the Qx output on the LOW-to-HIGH transition. When the clock enable is HIGH, the Qx outputs do not change state, regardless of the data or clock input transitions.	
ŌĒ	I	Output Control. When the \overline{OE} is HIGH, the Yx outputs are in the high-impedance state. When the \overline{OE} is LOW, the TRUE register data is present at the Yx outputs.	

FUNCTION TABLE(1)

	Inputs					rnal/ outs	
ŌĒ	CLR	ĒN	Dx	СР	Qx	Yx	Function
Н	Н	L	L	↑	L	Z	High Z
Н	Н	L	Н	↑	н	Z	
Н	L	Х	Х	Х	L	Z	Clear
L	L	Х	Х	Х	L	L	
Н	Н	Н	Х	Х	NC	Z	Hold
L	Н	Н	Х	Х	NC	NC	
Н	Н	L	L	↑	L	Z	Load
Н	Н	L	Н	↑	н	Z	
L	Н	L	L	↑	L	L	
L	Н	L	Н	\uparrow	Н	Н	

NOTE:

1. H = HIGH Voltage Level

X = Don't Care

L = LOW Voltage Level

NC = No Change

 \uparrow = LOW-to-HIGH Transition Z = High Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Industrial: $TA = -40^{\circ}C$ to $+85^{\circ}C$, $VCC = 5.0V \pm 5\%$

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
Vih	Input HIGH Level	Guaranteed Logic HIGH Level		2	—	_	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		_	_	0.8	V
Ін	Input HIGH Current ⁽⁴⁾	Vcc = Max.	VI = 2.7V	-	_	±1	μA
lı∟	Input LOW Current ⁽⁴⁾	Vcc = Max.	VI = 0.5V	-	_	±1	μA
lozн	High Impedance Output Current ⁽⁴⁾	Vcc = Max., VI = Vcc (Max.) VI = 2.7V		—	_	±1	μA
Iozl			VI = 0.5V	-	_	±1	
li	Input HIGH Current ⁽⁴⁾	Vcc = Max., VI = Vcc (Max.)		_	_	±1	μA
νικ	Clamp Diode Voltage	Vcc = Min., Iıℕ = −18mA		-	-0.7	-1.2	V
νн	Input Hysteresis	_		-	200	_	mV
lcc	Quiescent Power Supply Current	Vcc = Max. Vin = GND or Vcc			0.01	1	mA

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min	Vcc = Min IOH = -8mA		3.3	—	V
		VIN = VIH or VIL	Iон = –15mA	2	3	-	
Vol	Output LOW Voltage	VCC = Min IOL = 48mA		_	0.3	0.5	V
		VIN = VIH or VIL					
los	Short Circuit Current	Vcc = Max., Vo = GND ⁽³⁾		-60	-120	-225	mA
IOFF	Input/Output Power Off Leakage ⁽⁵⁾	Vcc = 0V, VIN or Vo \leq 4.5V			_	±1	μA

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.

4. The test limit for this parameter is $\pm 5\mu A$ at TA = $-55^\circ C.$

5. This parameter is guaranteed but not tested.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditi	ons ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	Vcc = Max. $VIN = 3.4V^{(3)}$		—	0.5	2	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open OE = EN = GND One Input Toggling 50% Duty Cycle	VIN = VCC VIN = GND	_	0.15	0.25	mA/ MHz
lc	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fcP = 10MHz 50% Duty Cycle	VIN = VCC VIN = GND	_	1.5	3.5	mA
		OE = EN = GND One Bit Toggling at fi = 5MHz	VIN = 3.4V VIN = GND	-	2	5.5	
		Vcc = Max. Outputs Open fcp = 10MHz	VIN = VCC VIN = GND	_	3.8	7.3 ⁽⁵⁾	
		50% Duty Cycle $\overline{OE} = \overline{EN} = GND$ Eight Bits Toggling at fi = 2.5MHz	VIN = 3.4V VIN = GND		6	16.3 ⁽⁵⁾	

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Per TTL driven input; (VIN = 3.4V). All other inputs at Vcc or GND.

4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

5. Values for these conditions are examples of Δlcc formula. These limits are guaranteed but not tested.

6. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $IC = ICC + \Delta ICC DHNT + ICCD (fCP/2+ fiNi)$

Icc = Quiescent Current

 Δ Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)

fcP = Clock Frequency for Register Devices (Zero for Non-Register Devices)

fi = Output Frequency

Ni = Number of Outputs at fi

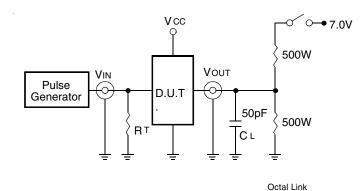
All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			FCT8	23AT	FCT	823CT	
Symbol	Parameter	Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
tPLH	Propagation Delay	CL = 50pF	1.5	10	1.5	6	ns
t PHL	CP to Yx (\overline{OE} = LOW)	$RL = 500\Omega$					
		$CL = 300 pF^{(4)}$	1.5	20	1.5	12.5	ns
		$RL = 500\Omega$					
tsu	Set-up Time HIGH or LOW Dx to CP	C∟ = 50pF	4		3	—	ns
ħ	Hold Time HIGH or LOW Dx to CP	$RL = 500\Omega$	2	—	1.5	—	ns
tsu	Set-up Time HIGH or LOW \overline{EN} to CP		4	—	3	-	ns
tH	Hold Time HIGH or LOW $\overline{\text{EN}}$ to CP		2	—	0	-	ns
t PHL	Propagation Delay, $\overline{\text{CLR}}$ to Yx		1.5	14	1.5	8	ns
t REM	Recovery Time CLR to CP		6	—	6	_	ns
tw	Clock Pulse Width HIGH or LOW		7	—	6	_	ns
tw	CLR Pulse Width LOW		6	—	6	-	ns
tPZH	Output Enable Time \overline{OE} to Yx	CL = 50pF	1.5	12	1.5	7	ns
tPZL		$RL = 500\Omega$					
		$CL = 300 pF^{(4)}$	1.5	23	1.5	12.5	ns
		$RL = 500\Omega$					
tPHZ	Output Disable Time \overline{OE} to Yx	$CL = 5pF^{(4)}$	1.5	7	1.5	6	ns
tPLZ		$RL = 500\Omega$					
		CL = 50pF	1.5	8	1.5	6.5	ns
		$RL = 500\Omega$					

NOTES:

1. See test circuit and waveforms.


2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. This parameter is guaranteed but not tested.

4. This condition is guaranteed but not tested.

IDT74FCT823AT/CT HIGH-PERFORMANCECMOSBUSINTERFACEREGISTER

TEST CIRCUITS AND WAVEFORMS

-tsu

tsi

Set-Up, Hold, and Release Times

tPLH

tPLH

Propagation Delay

tREM

тн

tPHL

tPHL

INPUT

TIMING

ASYNCHRONOUS CONTROL

SYNCHRONOUS CONTROL

CLOCK ENABLE

PRESET

CLEAR

PRESET

CLEAR

ETC.

SAME PHASE

OUTPUT

INPUT TRANSITION

OPPOSITE PHASE

INPUT TRANSITION

ETC.

INPUT

SWITCH POSITION

Test	Switch
Open Drain	
Disable Low	Closed
Enable Low	
All Other Tests	Open

DEFINITIONS:

1.5V

0V

зv

1.5V 0V

3V 1.5V 0V

ЗV

Octal Link

ЗV

0V

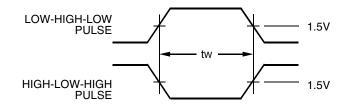
1.5V

νон

1.5V

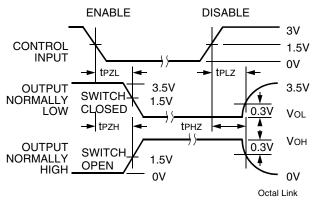
Vol

ЗV


0V

Octal Link

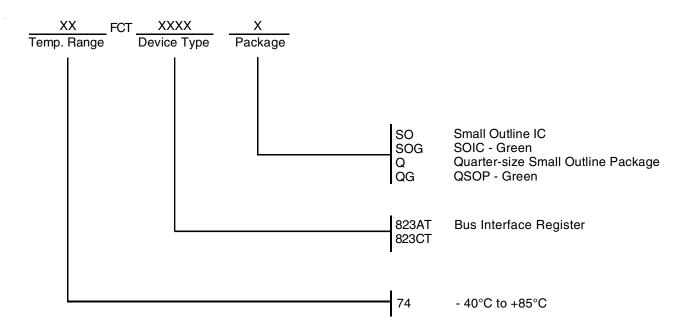
1.5V


1.5V 0V C_L = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

Pulse Width

Octal Link



Enable and Disable Times

NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.

ORDERING INFORMATION

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com