

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V CMOS OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

IDT74LVC245A

FEATURES:

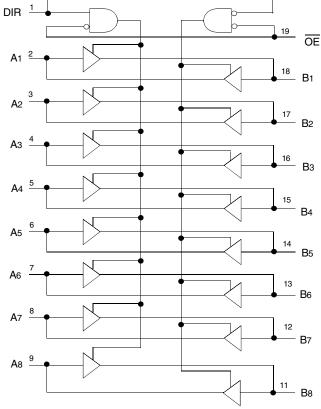
- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4μ W typ. static)
- · Rail-to-rail output swing for increased noise margin
- All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- Available in SOIC, SSOP, QSOP, and TSSOP packages

DRIVE FEATURES:

- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

- · 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems


DESCRIPTION:

This octal bus transceiver is built using advanced dual metal CMOS technology. This high-speed, low power transceiver is ideal for asynchronous communication between two busses (A and B). The direction control pin (DIR) controls the direction of data flow. The output enable pin (\overline{OE}) overrides the direction control and disables both ports. All inputs are designed with hysteresis for improved noise margin.

The LVC245A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

All pins can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

OCTOBER 2008

PIN CONFIGURATION

SOIC/ SSOP/ QSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	٧
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lık lok	Continuous Clamp Current, VI < 0 or Vo < 0	- 50	mA
lcc lss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	рF
Соит	Output Capacitance	Vout = 0V	5.5	8	рF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description	
ŌĒ	Output Enable Input (Active LOW)	
DIR	Direction Control Input	
Ax Side A Inputs or 3-State Outputs		
Вх	Side B Inputs or 3-State Outputs	

FUNCTION TABLE(1)

Inp	uts	
ŌĒ	DIR	Outputs
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	Z

NOTES:

- 1. H = HIGH Voltage Level
 - X = Don't Care
 - L = LOW Voltage Level
 - Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter	Test Con	ditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		T -	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μА
lozh lozl	High Impedance Output Current (3-State Output pins)	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μА
loff	Input/Output Power Off Leakage	$VCC = 0V$, $VIN \text{ or } VO \le 5.5V$		T -	_	±50	μА
Vık	Clamp Diode Voltage	VCC = 2.3V, IIN = -18mA		T -	-0.7	-1.2	٧
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or Vcc	_	_	10	μА
Iccz		$3.6 \le VIN \le 5.5V^{(2)}$			_	10	
∆lcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other in	One input at Vcc - 0.6V, other inputs at Vcc or GND		_	500	μA

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Voн	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc-0.2	-	V
		Vcc = 2.3V	Iон = -6mA	2	_	
		Vcc = 2.3V	Iон = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V		2.4	_	
		Vcc = 3V	Iон = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3V	IOL = 24mA	_	0.55	

NOTE

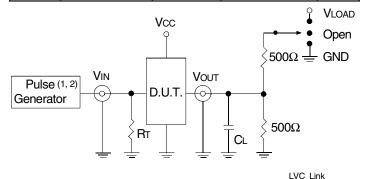
^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$.

OPERATING CHARACTERISTICS, $Vcc = 3.3V \pm 0.3V$, Ta = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Transceiver Outputs enabled	CL = 0pF, f = 10Mhz	47	pF
CPD	Power Dissipation Capacitance per Transceiver Outputs disabled		2	

SWITCHING CHARACTERISTICS(1)

		Vcc =	2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tPLH	Propagation Delay	_	7.3	1.5	6.3	ns
t _{PHL}	Ax to Bx, Bx to Ax					
tpzh	Output Enable Time	_	9.5	1.5	8.5	ns
tpzL	OE to Ax or Bx					
tphz	Output Disable Time	_	8.5	1.7	7.5	ns
tPLZ	OE to Ax or Bx					
tsk(o)	Output Skew ⁽²⁾	_	_	_	1	ns


NOTES:

^{1.} See TEST CIRCUITS AND WAVEFORMS. $TA = -40^{\circ}C$ to $+85^{\circ}C$.

^{2.} Skew between any two outputs of the same package and switching in the same direction.

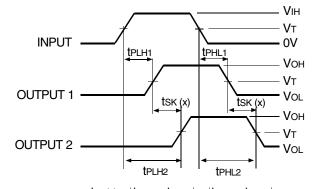
TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc/2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

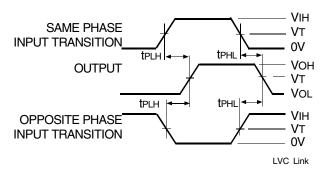

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

NOTES:

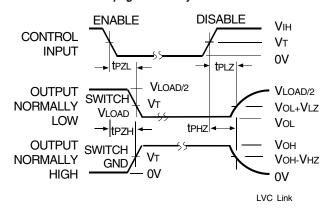
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

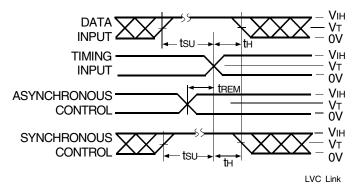

tsk(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

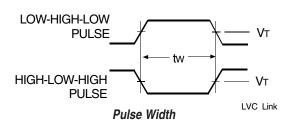
Output Skew - tsk(x)


LVC Link

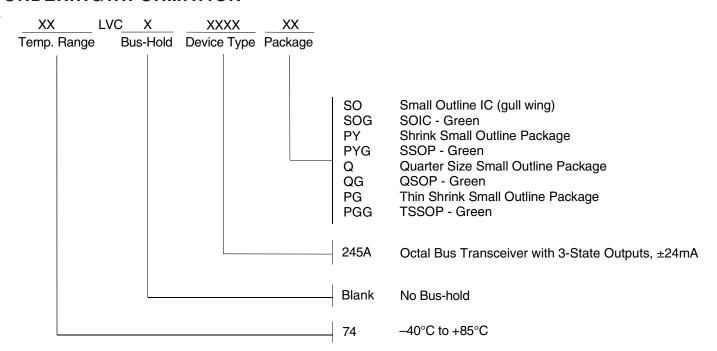
NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


Propagation Delay


Enable and Disable Times

NOTE:


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Set-up, Hold, and Release Times

ORDERING INFORMATION

