

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CMOS OCTAL BUS TRANSCEIVER AND 3.3V TO 5V SHIFTER WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

IDT74LVC4245A

FEATURES:

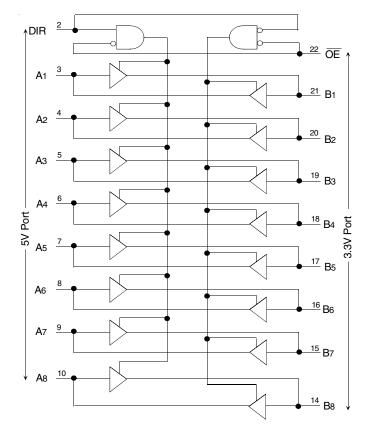
- 0.5 MICRON CMOS Technology
- VCCA = $5V \pm 0.5V$
- VCCB = 2.7V to 3.6V
- CMOS power levels (0.4μ W typ. static)
- · Rail-to-rail output swing for increased noise margin
- · All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- Available in SOIC, SSOP, QSOP, and TSSOP packages

DRIVE FEATURES:

- High Output Drivers: ±24mA
- · Reduced system switching noise

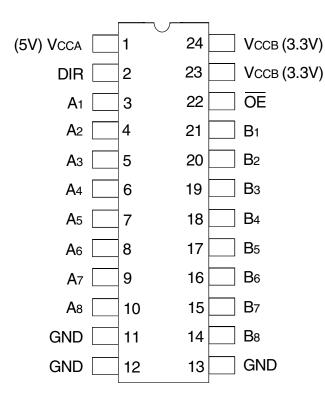
APPLICATIONS:

- · 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems


DESCRIPTION:

The LVC4245A is manufactured using advanced dual metal CMOS technology. This octal noninverting bus transceiver contains two separate supply rails; B port has Vcca, which is set at 3.3V, and A port has Vcca, which is set at 5V. This allows for translation from a 3.3V to a 5V environment, and vice-versa.

This device is ideal for asynchronous communication between two buses (A and B). The direction control pin (DIR) controls the direction of data flow. The output enable pin (\overline{OE}) overrides the direction control and disables both ports. All inputs are designed with hysteresis for improved noise margin.


The LVC4245A has been designed with a ±24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

PIN CONFIGURATION

SOIC/ SSOP/ QSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS FOR VCCB OR VCCB⁽¹⁾

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	٧
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lik lok	Continuous Clamp Current, VI < 0 or VO < 0	- 50	mA
Icc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation
of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V or VCCA	5		pF
		Vcca = Open			
CI/O	I/O Port Capacitance ⁽²⁾	VOUT = VCCA or GND	11		pF
		VCCA = 5V			
CI/O	I/O Port Capacitance(3)	VIN = VCCB or GND	11		pF
		VCCB = 3.3V			

NOTES:

- 1. As applicable to the device type.
- 2. For A port only.
- 3. For B port only.

PIN DESCRIPTION

Pin Names	Description	
ŌĒ	Output Enable Input (Active LOW)	
DIR	Direction Control Input	
Ax	Port A Inputs or 3-State Outputs	
Bx	Port B Inputs or 3-State Outputs	

FUNCTION TABLE(1)

Inputs		
ŌĒ	DIR	Outputs
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	High Z state

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (A PORT)

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40° C to $+85^{\circ}$ C, Vcca = $5V \pm 0.5V^{(1)}$

Symbol	Parameter	Test Condi	tions	Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Voltage Level	VCCA = 4.5V to 5.5V		2	_		V
VIL	Input LOW Voltage Level	VCCA = 4.5V to 5.5V		_	_	0.8	V
Іін	Input Leakage Current	VCCA = 5.5V	VI = 0 to 5.5V	_	_	±1	μA
lıL							
lozh	High Impedance Output Current	VCCA = 5.5V	Vo = 0 to 5.5V	_	_	±5	μА
lozL	(3-State Output pins)						
VH	Input Hysteresis	VCCA = 5V		_	100	_	mV
ICCL	Quiescent Power Supply Current	VCCA = 5.5V	VIN = GND or VCCA	_	_	80	μA
ICCH ICCZ							
Δlcc	Quiescent Power Supply Current	One input at 3.4V, other inputs at VCCA or GND		 		1.5	mA
2100	Variation Variation	VCCA = 4.5V to 5.5V	VOOR OF GIVE			1.5	IIIA

NOTES:

- 1. VCCB = 2.7V to 3.6V.
- 2. Typical values are at Vcca = 5V, +25°C ambient.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (B PORT)

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C, VCCB = 2.7V to $3.6V^{(1)}$

Symbol	Parameter	Test Cond	Test Conditions		Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Voltage Level	VCCB = 2.7V to 3.6V		2	_		V
VIL	Input LOW Voltage Level	VCCB = 2.7V to 3.6V	VCCB = 2.7V to 3.6V		_	0.8	V
lozh	High Impedance Output Current	VCCB = 3.6V	Vo = 0 to Vccb	T -	_	±5	μA
lozL	(3-State Output pins)						
VH	Input Hysteresis	VCCB = 3.3V		_	100	_	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	VCCB = 3.6V	Vin = GND or Vccb	_	_	50	μА
Δlcc	Quiescent Power Supply Current Variation	One input at VccB - 0.6V, other inputs at VccB or GND VccB = 2.7V to 3.6V		_	_	500	μA

NOTES:

- 1. $VCCA = 5V \pm 0.5V$.
- 2. Typical values are at VccB = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS, Vcca = 5V ± 0.5V (A PORT)

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Voн	Output HIGH Voltage	VCCA = 4.5V	IOH = - 0.1mA	4.3	_	V
	(B Port to A Port)	VCCA = 5.5V		5.3	_	
		VCCA = 4.5V	IOH = -24mA	3.7	_	
		VCCA = 5.5V		4.7	_	
Vol	Output LOW Voltage	VCCA = 4.5V	IoL = 0.1mA	_	0.2	V
	(B Port to A Port)	VCCA = 5.5V		_	0.2	
		VCCA = 4.5V	IoL = 24mA	_	0.55	
		VCCA = 5.5V		_	0.55	

NOTE:

OUTPUT DRIVE CHARACTERISTICS, VCCB = 2.7V TO 3.6V (B PORT)

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Vон	Output HIGH Voltage	VCCB = 2.7V to 3.6V	IOH = - 0.1mA	Vcc-0.2	_	V
	(A Port to B Port)	VCCB = 2.7V	IOH = - 12mA	2.2	_	
		VCCB = 3V		2.4	_	
		VCCB = 3V	IOH = -24mA	2	_	
Vol	Output LOW Voltage	VCCB = 2.7V to 3.6V	IOL = 0.1mA	_	0.2	V
	(A Port to B Port)	VCCB = 2.7V	IoL = 12mA	_	0.4	
		VCCB = 3V	IOL = 24mA	_	0.55	

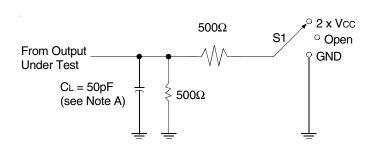
NOTE:

OPERATING CHARACTERISTICS, TA = 25°C

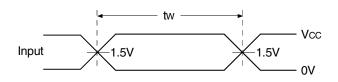
			VCCA = 5V, VCCB = 3.3V	
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Transceiver Outputs enabled	CL = 0pF, f = 10Mhz	39.5	pF
CPD	Power Dissipation Capacitance per Transceiver Outputs disabled		5	

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to + 85°C, VccB = 2.7V to 3.6V.

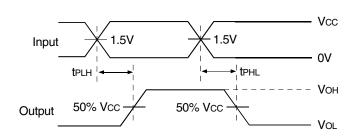
VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range.
 TA = - 40°C to + 85°C, Vcca = 5V ± 0.5V.


SWITCHING CHARACTERISTICS(1)

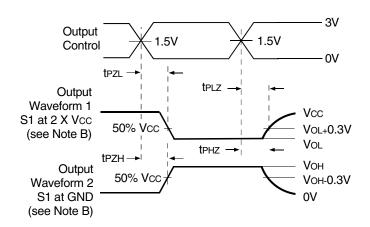
		VCCA = 5V ± 0.5V VCCB = 2.7V to 3.6V		
Symbol	Parameter	Min.	Max.	Unit
tplh	Propagation Delay	1	6.3	ns
tPHL	Ax to Bx	1	6.7	
tplH	Propagation Delay	1	6.1	ns
tPHL	Bx to Ax	1	5	
tpzl	Output Enable Time	1	8.8	ns
tPLZ	OE to Bx	1	9.8	
tpzl	Output Enable Time	1	9	ns
tPLZ	OE to Ax	1	8.1	
tplz	Output Disable Time	1	7.7	ns
tpHZ	OE to Bx	1	7.8	
tplz	Output Disable Time	1	7	ns
tphz	OE to Ax	1	5.8	


NOTE:

^{1.} See TEST CIRCUITS AND WAVEFORMS. $TA = -40^{\circ}C$ to $+85^{\circ}C$.


LOAD CIRCUIT AND VOLTAGE WAVEFORMS PARAMETER MEASUREMENT INFORMATION (A PORT)

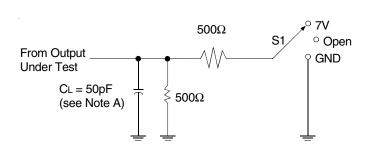
Load Circuit


Voltage Waveforms Pulse Duration

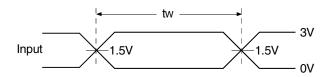
Voltage Waveforms Propagation Delay Times
Noninverting Outputs

TEST CONDITIONS

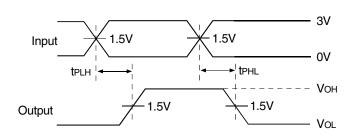
TEST	S 1
tplH/tpHL	Open
tplz/tpzl	2 x Vcc
tpHz/tpzH	GND



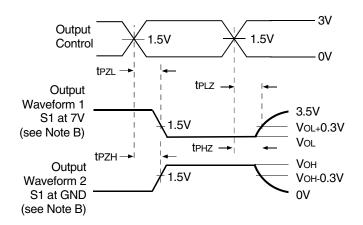
Voltage Waveforms Enable and Disable Times Low- and High-Level Enabling


NOTES:

- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tr \leq 2.5ns; tr \leq 2.5ns.
- D. The outputs are measured one at a time with one transition per measurement.


LOAD CIRCUIT AND VOLTAGE WAVEFORMS PARAMETER MEASUREMENT INFORMATION (B PORT)

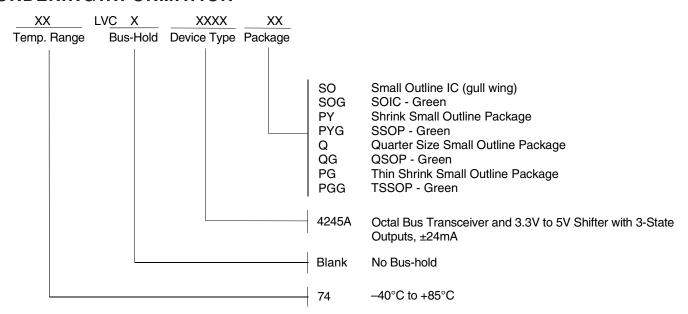
Load Circuit


Voltage Waveforms Pulse Duration

Voltage Waveforms Propagation Delay Times
Noninverting Outputs

TEST CONDITIONS

TEST	S 1
tPLH/tPHL	Open
tplz/tpzl	7V
tpHz/tpzH	GND



Voltage Waveforms Enable and Disable Times Low- and High-Level Enabling

NOTES:

- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tF \leq 2.5ns; tR \leq 2.5ns.
- D. The outputs are measured one at a time with one transition per measurement.

ORDERING INFORMATION

