

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

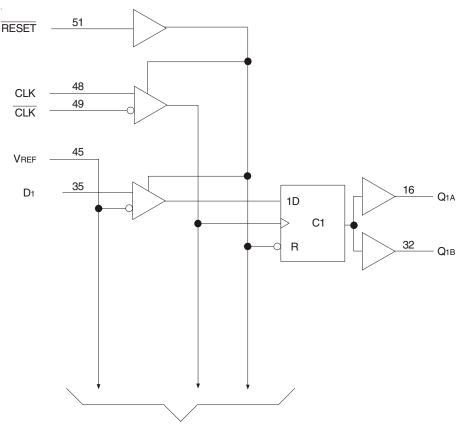
13-BIT TO 26-BIT REGISTERED IDT74SSTVN16859 BUFFER WITH SSTL I/O

FEATURES:

- 1:2 registered output buffer
- 2.3V to 2.7V operation for PC1600, PC2100, and PC2700
- 2.5V to 2.7V operation for PC3200
- Single bit propagation delay, TSSOP: 2.2ns, VFQFPN: 1.8ns
- SSTL 2 Class I style data inputs/outputs
- Differential CLK input
- RESET control compatible with LVCMOS levels
- Latch-up performance exceeds 100mA
- ESD >2000V per MIL-STD-883, Method 3015; >200V using machine model (C = 200pF, R = 0)
- Available in 56 pin VFQFPN and 64 pin TSSOP packages

APPLICATIONS:

- Ideally suited for stacked DIMM DDR registered applications
- Along with CSPT857C/D, Zero Delay PLL Clock buffer, provides complete solution for DDR1 DIMMs

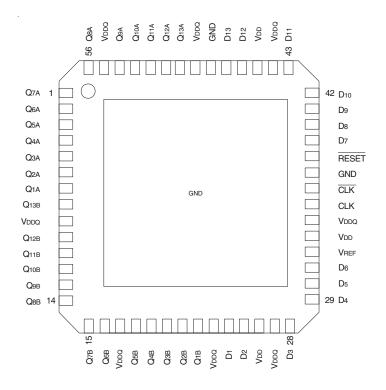

DESCRIPTION:

The SSTVN16859 is a 13-bit to 26-bit registered buffer designed for 2.3V-2.7V VDD for PC1600 - PC2700 and 2.5V-2.7V VDD for PC3200, and supports low standby operation. All data inputs and outputs are SSTL_2 level compatible with JEDEC standard for SSTL 2.

RESET is an LVCMOS input since it must operate predictably during the power-up phase. RESET, which can be operated independent of CLK and CLK, must be held in the low state during power-up in order to ensure predictable outputs (low state) before a stable clock has been applied.

 $\overline{\text{RESET}}$, when in the low state, will disable all input receivers, reset all registers, and force all outputs to a low state, before a stable clock has been applied. With inputs held low and a stable clock applied, outputs will remain low during the Low-to-High transition of $\overline{\text{RESET}}$.

FUNCTIONAL BLOCK DIAGRAM

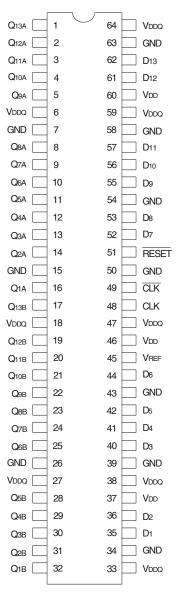

TO 12 OTHER CHANNELS

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

COMMERCIAL TEMPERATURE RANGE

JANUARY 2004

PIN CONFIGURATIONS


VFQFPN TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VDD or VDDQ	Supply Voltage Range	-0.5 to 3.6	٧
VI ⁽²⁾	Input Voltage Range	-0.5 to VDD +0.5	V
Vo ⁽³⁾	Output Voltage Range	-0.5 to VDDQ +0.5	٧
lık	Input Clamp Current, VI < 0	- 50	mA
Іок	Output Clamp Current,	±50	mA
	Vo < 0 or Vo > VDDQ		
lo	Continuous Output Current,	±50	mA
	Vo = 0 to VDDQ		
VDD Continuous Current through each		±100	mA
	VDD, VDDQ or GND		
Tstg	Storage Temperature Range	-65 to +150	°C

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
 permanent damage to the device. This is a stress rating only and functional operation
 of the device at these or any other conditions above those indicated in the operational
 sections of this specification is not implied. Exposure to absolute maximum rating
 conditions for extended periods may affect reliability.
- 2. The input and output negative voltage ratings may be exceeded if the ratings of the I/P and O/P clamp current are observed.
- 3. The output current will flow if the following conditions are observed:
 - a) Output in HIGH state
 - b) Vo = VDDQ

TSSOP TOP VIEW

FUNCTION TABLE (1)

	Input					
RESET	CLK	CLK	D	Q Outputs		
Н	↑	\rightarrow	L	L		
Н	↑	\downarrow	Н	Н		
Н	L or H	L or H	Х	Qo ⁽²⁾		
L	Х	X	Х	L		

NOTES:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
- X = Don't Care
- ↑ = LOW to HIGH
- \downarrow = HIGH to LOW
- 2. Qo = Output level before the indicated steady-state conditions were established.

PIN DESCRIPTION

Pin Names	Description
Q1 - Q13	Data Output
GND	Ground
VDDQ	Output-stage drain power voltage
VDD	Logic power voltage
RESET	Asynchronous reset input - resets registers and disables data and clock differential input recievers
VREF	Input reference voltage
CLK	Positive master clock input
CLK	Negative master clock input
D1 - D13	Data Input - clocked in on the crossing of the rising edge of CLK and the falling edge of $\overline{\text{CLK}}$
Center PAD	Ground (MLF package only)

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR PC1600 - PC2700

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = 0° C to $+70^{\circ}$ C, VDD = 2.5V ± 0.2 V, VDDQ = 2.5V ± 0.2 V

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vik	Control Inputs	VDD = 2.3V, II= −18mA	_	_	-1.2	V
Voн		VDD = 2.3V to 2.7V, IOH = -100μA	VDD - 0.2	_	_	V
		VDD = 2.3V, IOH = -8mA	1.95	_	_	
Vol		VDD = 2.3V to 2.7V, IoL = 100μA	_	_	0.2	٧
		VDD = 2.3V, IOL = 8mA	_	_	0.35	
lı	All Inputs	VDD = 2.7V,VI = VDD or GND	_	_	±5	μΑ
IDD	Static Standby	$IO = 0$, $VDD = 2.7V$, $\overline{RESET} = GND$	_	_	0.01	mA
	Static Operating	$IO = 0$, $VDD = 2.7V$, $\overline{RESET} = VDD$, $VI = VIH$ (AC) or VIL (AC)	_	_	20	
	Dynamic Operating (Clock Only)	$IO = 0$, $VDD = 2.7V$, $\overline{RESET} = VDD$, $VI = VIH$ (AC) or VIL (AC),	_	6	_	μA/Clock
		CLK and CLK Switching 50% Duty Cycle.				MHz
IDDD	Dynamic Operating	$IO = 0$, $VDD = 2.7V$, $\overline{RESET} = VDD$, $VI = VIH$ (AC) or VIL (AC),	_	43	_	μΑ/Clock
	(Per Each Data Input) ⁽¹⁾	CLK and CLK Switching 50% Duty Cycle. One Data Input				MHz/Data
		Switching at Half Clock Frequency, 50% Duty Cycle.				Input
	Data Inputs	$VDD = 2.5V$, $VI = VREF \pm 310mV$	2	_	3	
Cı	CLK and CLK	VICR = 1.25V, VI (PP) = 360mV	2	_	3	pF
	RESET	VI = VDD or GND	2	_	3	

NOTE:

^{1.} Power dissipation levels will allow operation at DDR333 speeds without excessive die temperature.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR PC3200

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = 0° C to $+70^{\circ}$ C, VDD = 2.6V ± 0.1 V, VDDQ = 2.6V ± 0.1 V

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vıĸ	Control Inputs	VDD = 2.5V, II= −18mA	_	_	-1.2	٧
Vон		VDD = 2.5V to 2.7V, IOH = -100μA	VDD - 0.2	_	_	٧
		VDD = 2.5V, IOH = -8mA	1.95	_	_	
Vol		VDD = 2.5V to 2.7V, IoL = 100μA	_	_	0.2	V
		VDD = 2.5V, IOL = 8mA	_	_	0.35	
lı	All Inputs	VDD = 2.7V,VI = VDD or GND	_	_	±5	μΑ
IDD	Static Standby	lo = 0, VDD = 2.7V, RESET = GND	_	_	0.01	mA
	Static Operating	$IO = 0$, $VDD = 2.7V$, $\overline{RESET} = VDD$, $VI = VIH$ (AC) or VIL (AC)	_	_	20	
	Dynamic Operating (Clock Only)	$IO = 0$, $VDD = 2.7V$, $\overline{RESET} = VDD$, $VI = VIH$ (AC) or VIL (AC),	_	6	_	μA/Clock
		CLK and CLK Switching 50% Duty Cycle.				MHz
IDDD	Dynamic Operating	$IO = 0$, $VDD = 2.7V$, $\overline{RESET} = VDD$, $VI = VIH$ (AC) or VIL (AC),	_	43	_	μΑ/Clock
	(Per Each Data Input) ⁽¹⁾	CLK and CLK Switching 50% Duty Cycle. One Data Input				MHz/Data
		Switching at Half Clock Frequency, 50% Duty Cycle.				Input
	Data Inputs	$VDD = 2.6V$, $VI = VREF \pm 310mV$	2	_	3	
Cı	CLK and CLK	VICR = 1.3V, VI (PP) = 360mV	2	_	3	pF
	RESET	VI = VDD or GND	2	_	3	

NOTE:

OPERATING CHARACTERISTICS, TA = 25°C (1)

Symbol	Parameter		Min.	Typ. ⁽¹⁾	Max.	Unit
VDD	Supply Voltage		VDDQ	_	2.7	V
VDDQ	Output Supply Voltage	PC1600 - PC12700	2.3	2.5	2.7	V
		PC3200	2.5	2.6	2.7	
VREF	Reference Voltage (VREF=VDDQ/2)	PC1600 - PC2700	1.15	1.25	1.35	V
		PC3200	1.25	1.3	1.35	
VTT	Termination Voltage		VREF-40mV	VREF	VREF+ 40mV	V
Vı	Input Voltage		0	_	VDD	V
ViH	AC High-Level Input Voltage	Data Inputs	VREF+ 310mV	_	_	V
VIL	AC Low-Level Input Voltage	Data Inputs	_	_	VREF-310mV	V
ViH	DC High-Level Input Voltage	Data Inputs	VREF+ 150mV	_	_	V
VIL	DC Low-Level Input Voltage	Data Inputs	_	_	VREF-150mV	V
ViH	High-Level Input Voltage	RESET	1.7	_	_	V
VIL	Low-Level Input Voltage	RESET	_	_	0.7	V
Vicr	Common-Mode Input Range	CLK, CLK	0.97	_	1.53	V
VI(PP)	Peak-to-Peak Input Voltage	CLK, CLK	360	_	_	mV
Іон	High-Level Output Current		_	_	-16	mA
loL	Low-Level Output Current		_	_	16	
TA	Operating Free-Air Temperature		0	_	+70	°C

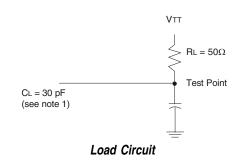
NOTE:

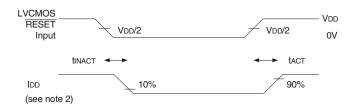
^{1.} Power dissipation levels will allow operation at DDR400 speeds without excessive die temperature.

^{1.} The $\overline{\text{RESET}}$ input of the device must be held at VDD or GND to ensure proper device operation.

TIMING REQUIREMENTS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE

			PC1600-PC2700		PC3200		
Symbol	Parameter		Min.	Max.	Min.	Max.	Unit
CLOCK	Clock Frequency		_	200	_	220	MHz
tw	Pulse Duration, CLK, CLK HIGH or LOW		2.5	_	2.5	_	ns
tact	Differential Inputs Active Time ⁽¹⁾			22		22	ns
tinact	Differential Inputs Inactive Time ⁽²⁾		_	22	_	22	ns
tsu	Setup Time, Fast Slew Rate(3,5)	Data Before CLK↑, CLK↓	0.65	_	0.65	_	ns
	Setup Time, Slow Slew Rate(4,5)		0.75	_	0.75	_	ns
tн	Hold Time, Fast Slew Rate(3,5)	Data Before CLK \uparrow , CLK \downarrow	0.75	_	0.65	_	ns
	Hold Time, Slow Slew Rate(2,5)		0.9	_	0.8	_	ns

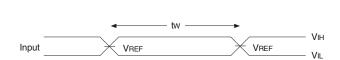

NOTES:

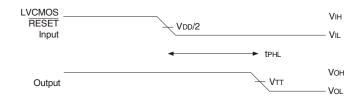

- 1. Data inputs must be low a minimum time of tACT max., after RESET is taken HIGH.
- 2. Data and clock inputs must be held at valid levels (not floating) a minimum time of tinact max., after RESET is taken LOW.
- 3. For data signal input slew rate is $\geq 1V/ns$.
- 4. For data signal input slew rate is ≥0.5V/ns and <1V/ns.
- 5. CLK, CLK signal input slew rates are ≥1V/ns.

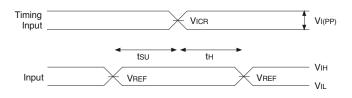
SWITCHING CHARACTERISTICS OVER RECOMMENDED FREE-AIR OPERATING RANGE (UNLESS OTHERWISE NOTED)

			PC1600-PC2700		PC3200		
Symbol	Parameter	Package	Min.	Max.	Min.	Max.	Unit
fMAX		TSSOP, VFQFPN	200	_	220	-	MHz
tPDM	CLK and CLK to Q	TSSOP	1.1	2.4	1.1	2.2	ns
		VFQFPN	1.1	2.2	1.1	1.8	
tPDMSS	CLK and CLK to Q (simultaneous switching)	TSSOP	_	2.7	ı	2.5	ns
		VFQFPN	_	2.5	_	((TBD))	
tPHL	RESET to Q	TSSOP, VFQFPN	_	5	_	5	ns

TEST CIRCUITS AND WAVEFORMS FOR PC1600 - PC2700, VDD = 2.5V ± 0.2V FOR PC3200, VDD = 2.6V ± 0.1V

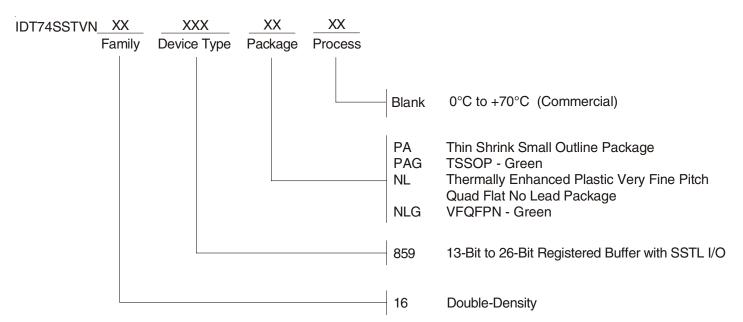



Voltage and Current Waveforms Inputs Active and Inactive Times


Voltage Waveforms - Propagation Delay Times

Voltage Waveforms - Pulse Duration

Voltage Waveforms - Propagation Delay Times



Voltage Waveforms - Setup and Hold Times

NOTES:

- 1. CL includes probe and jig capacitance.
- 2. IDD tested with clock and data inputs held at VDD or GND, and Io = 0mA.
- 3. All input pulses are supplied by generators having the following characteristics: PRR ≤10MHz, Zo = 50Ω, input slew rate = 1 V/ns ±20% (unless otherwise specified).
- 4. The outputs are measured one at a time with one transition per measurement.
- 5. VTT = VREF = VDDQ/2
- 6. VIH = VREF + 310mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS input.
- 7. VIL = VREF 310mV (AC voltage levels) for differential inputs. VIL = GND for LVCMOS input.
- 8. tppm is tpp with one output switching. tppmss is tpp with all outputs switching.

ORDERING INFORMATION

