

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DAC1001D125

Dual 10-bit DAC, up to 125 Msps

Product data sheet

General description 1.

The DAC1001D125 is a dual-port high-speed 2-channel CMOS Digital-to-Analog Converter (DAC), optimized for high dynamic performance with low power dissipation. The Supporting an update rate of up to 125 Msps, the DAC1001D125 is suitable for Direct IF applications.

Separate write inputs allow data to be written to the two DAC ports independently of one another. Two separate clocks control the update rate of each DAC port.

The DAC1001D125 can interface two separate data ports or one single interleaved high-speed data port. In Interleaved mode, the input data stream is demultiplexed into its original I and Q data and latched. The I and Q data is then converted by the two DACs and updated at half the input data rate.

Each DAC port has a high-impedance differential current output, suitable for both single-ended and differential analog output configurations.

The DAC1001D125 is pin compatible with the AD9763, DAC2900 and DAC5652.

Features and benefits 2.

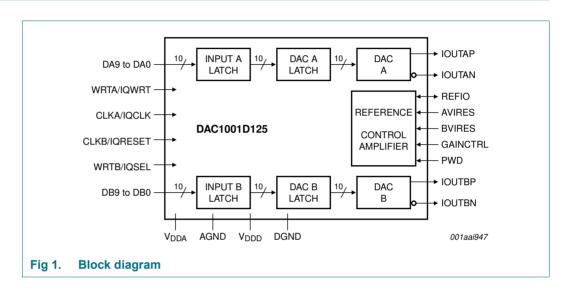
- Dual 10-bit resolution
- 125 Msps update rate
- Single 3.3 V supply
- Dual-port or Interleaved data modes
- 1.8 V, 3.3 V and 5 V compatible digital inputs
- Internal and external reference

- Typical 185 mW power dissipation
- 16 mW power-down
- SFDR: 80 dBc; $f_0 = 1$ MHz; $f_s = 52 \text{ Msps}$
- SFDR: 77 dBc; fo = 10.4 MHz; fs = 78 Msps
- SFDR: 72 dBc; $f_0 = 1$ MHz; $f_s = 52 \text{ Msps}; -12 \text{ dBFS}$
- LQFP48 package
- 2 mA to 20 mA full-scale output current
 Industrial temperature range of -40 °C to +85 °C

3. Applications

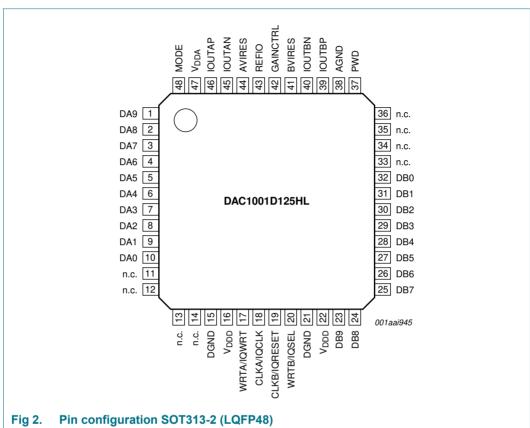
- Quadrature modulation
- Medical/test instrumentation
- Direct IF applications

- Direct digital frequency synthesis
- Arbitrary waveform generator



4. Ordering information

Table 1. Ordering information


Type number	Package		
	Name	Description	Version
DAC1001D125HL	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4 \text{ mm}$	SOT313-2

5. Block diagram

6. **Pinning information**

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Type ^[1]	Description
DA9	1	I	DAC A, data input bit 9 (MSB)
DA8	2	l	DAC A, data input bit 8
DA7	3	1	DAC A, data input bit 7
DA6	4	1	DAC A, data input bit 6
DA5	5	I	DAC A, data input bit 5
DA4	6	I	DAC A, data input bit 4
DA3	7	I	DAC A, data input bit 3
DA2	8	I	DAC A, data input bit 2
DA1	9	I	DAC A, data input bit 1
DA0	10	I	DAC A, data input bit 0 (LSB)
n.c.	11		not connected
n.c.	12		not connected
n.c.	13		not connected

Table 2. Pin description ...continued

Symbol	Pin	Type ^[1]	Description
n.c.	14		not connected
DGND	15	G	digital ground
V_{DDD}	16	S	digital supply voltage
WRTA/IQWRT	17	I	input write port A/input write IQ in Interleaved mode
CLKA/IQCLK	18	I	input clock port A/input clock IQ in Interleaved mode
CLKB/IQRESET	19	I	input clock port B/reset IQ in Interleaved mode
WRTB/IQSEL	20	I	input write port B/select IQ in Interleaved mode
DGND	21	G	digital ground
V_{DDD}	22	S	digital supply voltage
DB9	23	I	DAC B, data input bit 9 (MSB)
DB8	24	I	DAC B, data input bit 8
DB7	25	I	DAC B, data input bit 7
DB6	26	I	DAC B, data input bit 6
DB5	27	I	DAC B, data input bit 5
DB4	28	I	DAC B, data input bit 4
DB3	29	I	DAC B, data input bit 3
DB2	30	I	DAC B, data input bit 2
DB1	31	I	DAC B, data input bit 1
DB0	32	I	DAC B, data input bit 0 (LSB)
n.c.	33		not connected
n.c.	34		not connected
n.c.	35		not connected
n.c.	36		not connected
PWD	37	I	power-down mode
AGND	38	S	analog ground
IOUTBP	39	0	DAC B current output
IOUTBN	40	0	complementary DAC B current output
BVIRES	41	I	adjust DAC B for full-scale output current
GAINCTRL	42	I	gain control mode
REFIO	43	I/O	reference I/O
AVIRES	44	I	adjust DAC A for full-scale output current
IOUTAN	45	0	complementary DAC A current output
IOUTAP	46	0	DAC A current output
V_{DDA}	47	S	analog supply voltage
			select between Dual-port or Interleaved mode

^[1] Type description: S = Supply; G = Ground; I = Input; O = Output; I/O = Input/Output.

4 of 25

7. Limiting values

Table 3. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DDD}	digital supply voltage		[1] -0.3	+5.0	V
V_{DDA}	analog supply voltage		[1] -0.3	+5.0	V
ΔV_{DD}	supply voltage difference	between analog and digital supply voltage	-150	+150	mV
VI	input voltage	digital inputs referenced to DGND	-0.3	+5.5	V
		pins REFIO, AVIRES, BVIRES referenced to AGND	-0.3	+5.5	V
Vo	output voltage	pins IOUTAP, IOUTAN, IOUTBP and IOUTBN referenced to AGND	-0.3	V _{DDA} + 0.3	V
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		-40	+85	°C
Tj	junction temperature		-	125	°C

^[1] All supplies are connected together.

8. Thermal characteristics

Table 4. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	89.3	K/W
R _{th(c-a)}	thermal resistance from case to ambient	in free air	60.6	K/W

9. Characteristics

Table 5. Characteristics

 V_{DDD} = V_{DDA} = 3.3 V; AGND and DGND connected together; $I_{O(fs)}$ = 20 mA and T_{amb} = -40 °C to +85 °C; typical values measured at T_{amb} = 25 °C.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supplies						
V_{DDD}	digital supply voltage		3.0	3.3	3.65	V
V_{DDA}	analog supply voltage		3.0	3.3	3.65	V
I _{DDD}	digital supply current	f_s = 65 Msps, f_o = 1 MHz, V_{DD} = 3.0 V to 3.6 V	-	6	7	mA
I _{DDA}	analog supply current	f_s = 65 Msps, f_o = 1 MHz, V_{DD} = 3.0 V to 3.6 V	-	50	65	mA
P _{tot}	total power dissipation	f_s = 65 Msps, f_o = 1 MHz, V_{DD} = 3.0 V to 3.6 V	-	185	260	mW
P_{pd}	power dissipation in power-down mode		-	16.5	-	mW
Digital in	puts					
V _{IL}	LOW-level input voltage		DGND	-	0.9	V
V _{IH}	HIGH-level input voltage		1.3	-	V_{DDD}	V

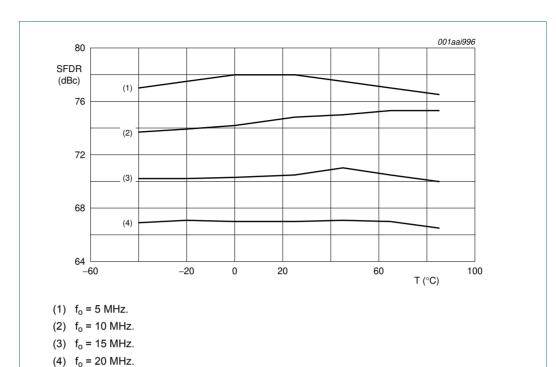
6 of 25

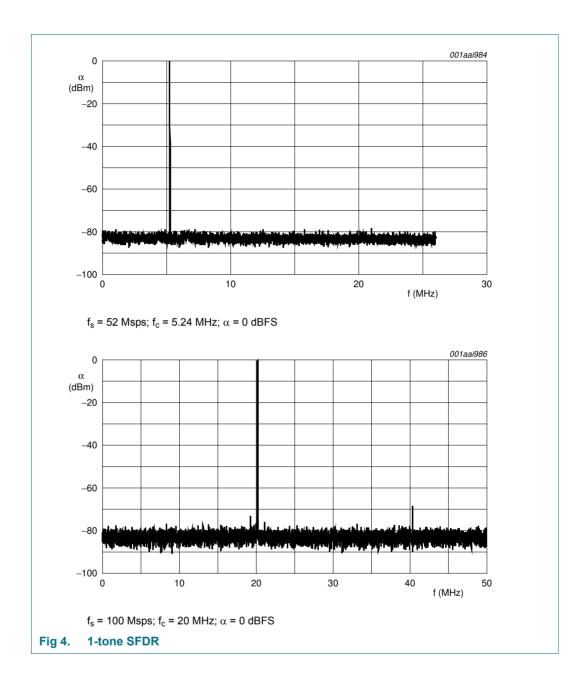
Dual 10-bit DAC, up to 125 Msps

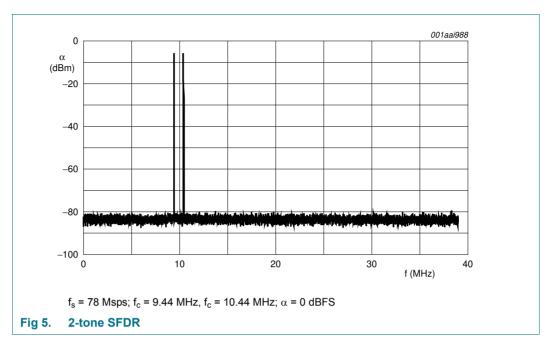
Table 5. Characteristics ...continued

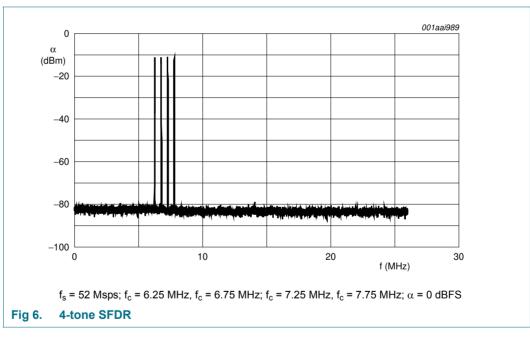
Product data sheet

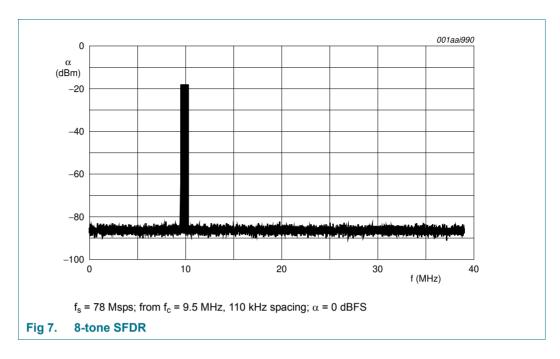
 V_{DDD} = V_{DDA} = 3.3 V; AGND and DGND connected together; $I_{O(fs)}$ = 20 mA and T_{amb} = -40 °C to +85 °C; typical values measured at T_{amb} = 25 °C.

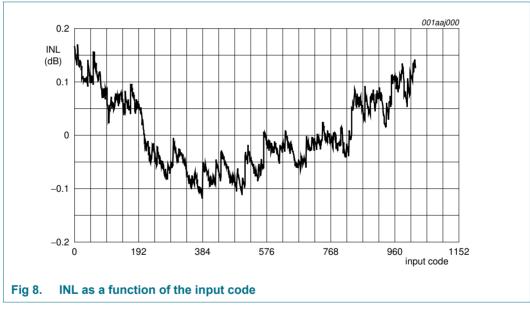

Symbol	Parameter	Conditions	N	Min	Тур	Max	Unit
I _{IL}	LOW-level input current	V _{IL} = 0.9 V	-	•	5	-	μΑ
I _{IH}	HIGH-level input current	V _{IH} = 1.3 V	-	•	5	-	μΑ
C _i	input capacitance		[1] _	•	5	-	pF
Analog o	outputs: pins IOUTAP, IOUTAN,	OUTBP and IOUTBN					
$I_{O(fs)}$	full-scale output current	differential outputs	2	2	-	20	mA
Vo	output voltage	compliance range	-	-1	-	+1.25	V
R _o	output resistance		[1] _	•	150	-	$k\Omega$
Co	output capacitance		[1] _	•	3	-	pF
Reference	e voltage input/output: pin REF	FIO					
$V_{O(ref)}$	reference output voltage		^[1] 1	1.21	1.26	1.31	V
I _{O(ref)}	reference output current		-	•	100	-	nA
Vi	input voltage	compliance range	1	1.0	-	1.26	V
R _i	input resistance		-	•	1	-	$M\Omega$
Input timing; see Figure 18							
f_s	sampling frequency		-	•	-	125	Msps
$t_{\text{W(WRT)}}$	WRT pulse width	pins WRTA, WRTB	2	2	-	-	ns
$t_{w(CLK)}$	CLK pulse width	pins CLKA, CLKB	2	2	-	-	ns
t _{h(i)}	input hold time		1	1	-	-	ns
t _{su(i)}	input set-up time		1	1.8	-	-	ns
Output ti	ming: pins IOUTAP, IOUTAN, IO	UTBP and IOUTBN					
t _d	delay time		-	•	1	-	ns
t _t	transition time	rising or falling transition (10 % to 90 % or 90 % to 10 %)	[1] _		0.6	-	ns
t _s	settling time	±1 LSB	[1] _		16	-	ns
Static lin	earity						
INL	integral non-linearity	25 °C	<u>±</u>	<u></u> ±0.1	±0.13	±0.18	LSB
		–40 °C to +85 °C	<u>±</u>	±0.08	-	±0.18	LSB
DNL	differential non-linearity	–40 °C to +85 °C	<u>±</u>	±0.03	±0.05	±0.07	LSB
Static ac	curacy (relative to full-scale) wi	th GAINCTRL = 0					
E _{offset}	offset error		_	-0.02	-	+0.02	%
E _G	gain error	with external reference	_	-1.9	±1.5	+2.5	%
		with internal reference	_	-2.9	±2.1	+2.9	%
ΔG	gain mismatch	between DAC A and DAC B	-	-0.5	±0.5	+0.5	%

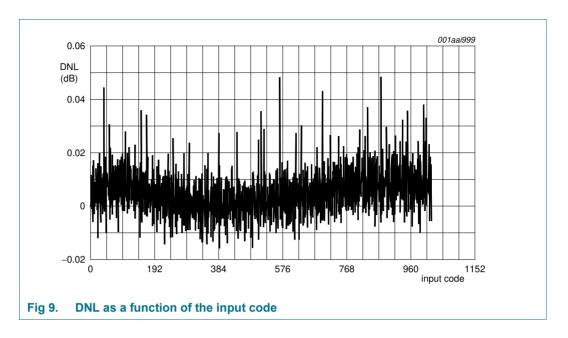

Table 5. Characteristics ...continued

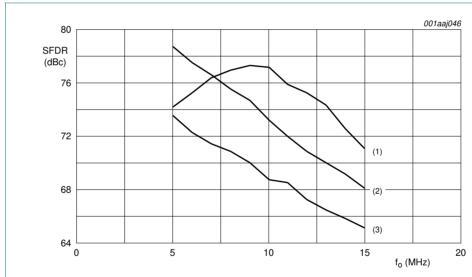

 V_{DDD} = V_{DDA} = 3.3 V; AGND and DGND connected together; $I_{O(fs)}$ = 20 mA and T_{amb} = -40 °C to +85 °C; typical values measured at T_{amb} = 25 °C.

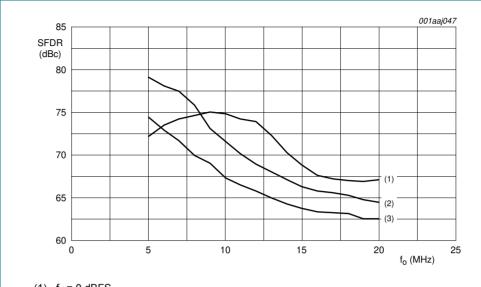

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Dynamic	performance					
SFDR	spurious free dynamic range	B = Nyquist				
		$f_s = 52 \text{ Msps}; f_o = 1 \text{ MHz}$				
		0 dBFS	-	80	-	dBc
		-6 dBFS	-	78	-	dBc
		-12 dBFS	-	72	-	dBc
		f _s = 52 Msps; 0 dBFS				
		f _o = 5.24 MHz	-	78	-	dBc
		f _s = 78 Msps; 0 dBFS				
		f _o = 10.4 MHz	-	77	-	dBc
		f _o = 15.7 MHz	-	70	-	dBc
		f _s = 100 Msps; 0 dBFS				
		f _o = 5.04 MHz	-	76	-	dBc
		f _o = 20.2 MHz	60	68	-	dBc
		f _s = 125 Msps; 0 dBFS				
		f _o = 20.1 MHz	-	67	-	dBc
		Within a Window				
		f_s = 52 Msps; f_o = 1 MHz; 2 MHz span	-	87	-	dBc
		f_s = 52 Msps; f_o = 5.24 MHz; 10 MHz span	-	85	-	dBc
		f_s = 78 Msps; f_o = 5.26 MHz; 10 MHz span	-	88	-	dBc
		f _s = 125 Msps; f _o = 5.04 MHz; 10 MHz span	78	88	-	dBc
THD	total harmonic distortion	$f_s = 52 \text{ Msps}; f_o = 1 \text{ MHz}$	-	-77	-	dBc
		$f_s = 78 \text{ Msps}; f_o = 5.26 \text{ MHz}$	-	-75	-	dBc
		$f_s = 100 \text{ Msps}; f_o = 5.04 \text{ MHz}$	-	-73	-	dBc
		$f_s = 125 \text{ Msps}; f_o = 20.1 \text{ MHz}$	-	-63	-59	dBc
MTPR	multitone power ratio	f_s = 65 Msps; 2 MHz < f_o < 2.99 MHz; 8 tones at 110 kHz spacing at 0 dB full-scale	-	80	-	dBc
NSD	noise spectral density	$f_s = 100 \text{ Msps}; f_o = 5.04 \text{ MHz}$	-	-148.5	-	dBm/H
α_{cs}	channel separation	$f_s = 78 \text{ Msps}; f_o = 10.4 \text{ MHz}$	-	88.0	-	dBc
		f _s = 125 Msps; f _o = 20.1 MHz	-	83.5	-	dBc


^[1] Guaranteed by design.









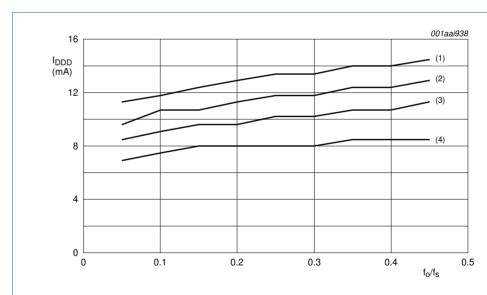

- (1) $f_0 = 0$ dBFS.
- (2) $f_0 = -6 \text{ dBFS}.$
- (3) $f_0 = -12 \text{ dBFS}.$

Fig 10. SFDR full-scale at 78 Msps as a function of the output frequency

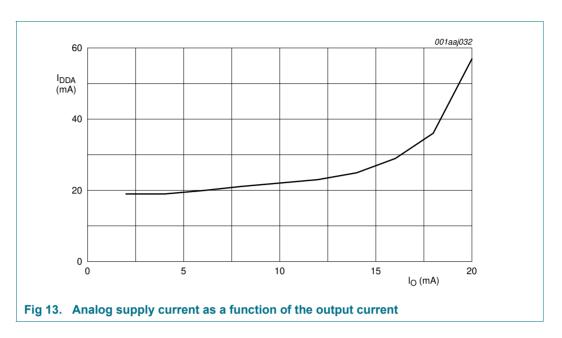

- (1) $f_0 = 0$ dBFS.
- (2) $f_0 = -6 \text{ dBFS}.$
- (3) $f_0 = -12 \text{ dBFS}.$

Fig 11. SFDR full-scale at 125 Msps as a function of the output frequency

- (1) $f_s = 125 \text{ Msps}$.
- (2) $f_s = 100 \text{ Msps}.$
- (3) $f_s = 78 \text{ Msps}.$
- (4) $f_s = 52 \text{ Msps.}$

Fig 12. Digital supply current as a function of fo/fs

10. Application information

10.1 General description

The DAC1001D125 is a dual 10-bit DAC operating up to 125 Msps. Each DAC consists of a segmented architecture, comprising a 7-bit thermometer sub-DAC and a 3-bit binary weighted sub-DAC.

Two modes are available for the digital input depending on the status of the pin MODE. In Dual-port mode, each DAC uses its own data input line at the same frequency as the update rate. In Interleaved mode, both DACs use the same data input line at twice the update rate.

Each DAC generates on pins IOUTAP/IOUTAN and IOUTBP/IOUTBN two complementary current outputs. This provides a full-scale output current (I_{O(fs)}), up to 20 mA. A single common or two independent full-scale current controls can be selected for both channels using pin GAINCTRL. An internal reference is available for the reference current, which is externally adjustable using pin REFIO.

The DAC1001D125 operates at 3.3 V and has separate digital and analog power supplies. Pin PWD is used to power-down the device. The digital input is 1.8 V compliant, 3.3 V compliant and 5 V tolerant.

10.2 Input data

The DAC1001D125 input follows a straight binary coding where DA9 and DB9 are the Most Significant Bits (MSB) and DA0 and DB0 are the Least Significant Bits (LSB).

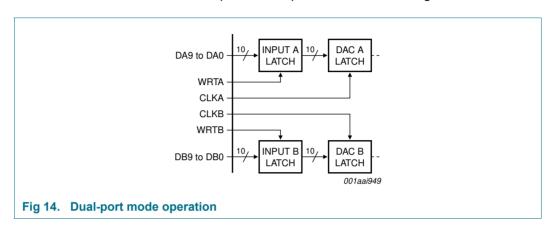
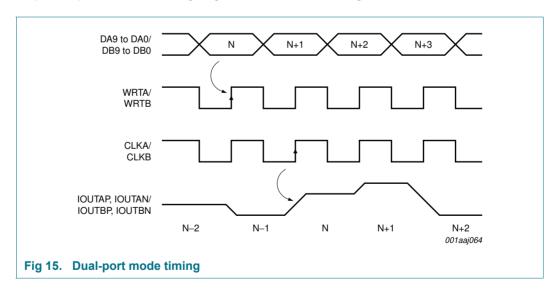
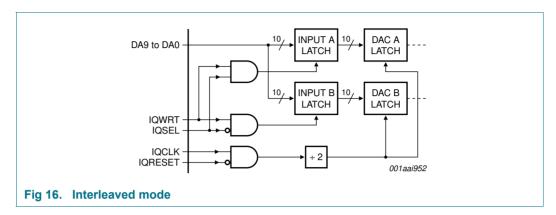

The setting applied to pin MODE defines whether the DAC1001D125 operates in Dual-port mode or in Interleaved mode (see Table 6).

Table 6. Mode selection

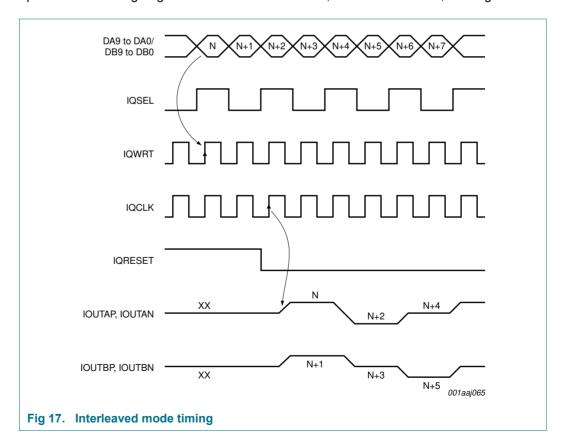

Mode	Function	DA9 to DA0	DB9 to DB0	Pin 17	Pin 18	Pin 19	Pin 20
0	Interleaved mode	active	off	IQWRT	IQCLK	IQRESET	IQSEL
1	Dual-port mode	active	active	WRTA	CLKA	CLKB	WRTB

10.2.1 Dual-port mode

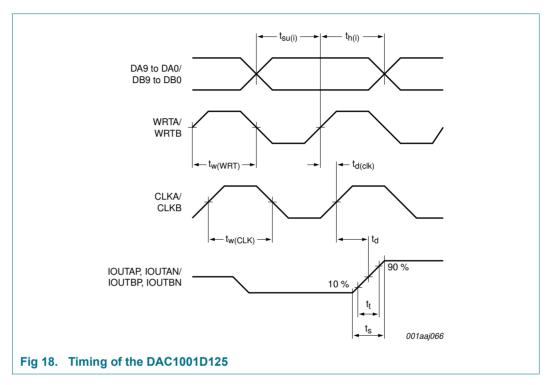
The data and clock circuit for Dual-port mode operation is shown in Figure 14.



Each DAC has its own independent data and clock inputs. The data enters the input latch on the rising edge of the WRTA/WRTB signal and is transferred to the DAC latch. The output is updated on the rising edge of the CLKA/CLKB signal.


10.2.2 Interleaved mode

The data and clock circuit for Interleaved mode operation is illustrated in Figure 16.


In Interleaved mode, both DACs use the same data and clock inputs at twice the update rate. Data enters the latch on the rising edge of IQWRT. The data is sent to either latch A or latch B, depending on the value of IQSEL. The IQSEL transition must occur when IQWRT and IQCLK are LOW.

The IQCLK is divided by 2 internally and the data is transferred to the DAC latch. It is updated on its rising edge. When IQRESET is HIGH, IQCLK is disabled, see Figure 17.

10.3 Timing

The DAC1001D125 can operate at an update rate of 125 Msps, which generates an input data rate of 125 MHz in Dual-port mode and 250 MHz in Interleaved mode. The timing of the DAC1001D125 is shown in Figure 18.

The typical performances are measured at 50 % duty cycle but any timing within the limits of the characteristics will not alter the performance.

- · A configuration resulting in the same timing for the signals WRTA/WRTB and CLKA/CLKB, can be achieved either by synchronizing them or by connecting them together.
- The rising edge of the CLKA/CLKB signal can also be placed in a range from half a period in front of the rising edge of the WRTA/WRTB signal to half a period minus 1 ns after the rising edge of the WRTA/WRTB signal.

A typical set-up time of 0 ns and a hold time of 0.6 ns enable the DAC1001D125 to be easily integrated into any application.

10.4 DAC transfer function

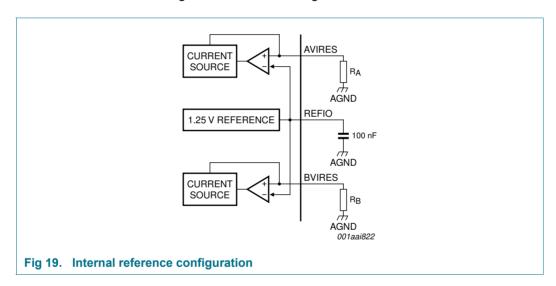
The full-scale output current for each DAC is the sum of the two complementary current outputs:

$$I_{O(f_S)} = I_{IOUTP} + I_{IOUTN} \tag{1}$$

The output current depends on the digital input data:

$$I_{IOUTP} = I_{O(fs)} \times \left(\frac{DATA}{I024}\right) \qquad I_{IOUTN} = I_{O(fs)} \times \left(\frac{(1023 - DATA)}{I024}\right)$$

Table 7 shows the output current as a function of the input data, when $I_{O(fs)}$ = 20 mA.


Table 7. DAC transfer function

Data	DA9/DB9 to DA0/DB0	IOUTAP/IOUTBP	IOUTAN/IOUTBN
0	00 0000 0000	0 mA	20 mA
8192	10 0000 0000	10 mA	10 mA
16383	11 1111 1111	20 mA	0 mA

10.5 Full-scale current adjustment

The DAC1001D125 integrates one 1.25 V reference and two current sources to adjust the full-scale current in both DACs.

The internal reference configuration is shown in Figure 19.

The bias current is generated by the output of the internal regulator connected to the inverting input of the internal operational amplifiers. The external resistors R_A and R_B are connected to pins AVIRES and BVIRES, respectively. This configuration is optimal for temperature drift compensation because the band gap can be matched with the voltage on the feedback resistors.

The relationship between full-scale output current $(I_{O(fs)})$ at the output of channel A or channel B and the resistor is:

$$I_{O(fs)} = \frac{24V_{REFIO}}{R_A} \tag{2}$$

The output current of the two DACs is typically fixed to 20 mA when both resistors R_A and R_B are set to 1.5 k Ω . The operational range of DAC1001D125 is from 2 mA to 20 mA.

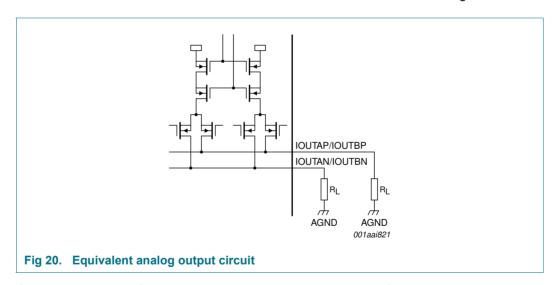
It is recommended to decouple pin REFIO with a 100 nF capacitor.

An external reference can also be used for applications requiring higher accuracy or precise current adjustment. Due to the high input impedance of pin REFIO, applying an external source disables the band gap.

10.6 Gain control

Table 8 shows how to select the different gain control modes.

Table 8. Gain control


GAINCTRL	Mode	DAC A full-scale control	DAC B full-scale control
0	independent gain control	AVIRES	BVIRES
1	common gain control	AVIRES	AVIRES

In independent gain mode, both full-scale currents can be adjusted independently using resistors R_A on pin AVIRES and R_B on pin BVIRES.

In Common gain mode, the full-scale current is adjusted with resistor R_{A} on pin AVIRES and divided by two in both DACs.

10.7 Analog outputs

See Figure 20 for the analog output circuit of one DAC. This circuit consists of a parallel combination of PMOS current sources and associated switches for each segment.

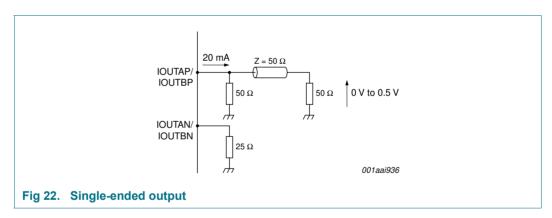
Cascode source configuration enables the output impedance of the source to be increased, thus improving the dynamic performance by reducing distortion.


The DAC1001D125 can be used either with:

- a differential output, coupled to a transformer (or operational amplifier) to reduce even-order harmonics and noise
- · or a single-ended output for applications requiring unipolar voltage.

The typical configuration is to use 1 V p-p level on each output IOUTAP/IOUTBP and IOUTAN/IOUTBN but several combinations can be used as far as they respect the voltage compliance range.

10.7.1 Differential output using transformer


The use of a differentially coupled transformer output (see Figure 21) provides optimum distortion performance. In addition, it helps to match the impedance and provides electrical isolation.

The center tap is grounded to allow the DC current flow to/from both outputs. If the center tap is open, the differential resistor must be replaced by two resistors connected to ground.

10.7.2 Single-ended output

Using a single load resistor on one current output will provide an unipolar output range, typically from 0 V to 0.5 V with a 20 mA full-scale current at a 50 Ω load.

The resistor on the other current output is 25 Ω .

10.8 Power-down function

The DAC1001D125 has a power-down function to reduce the power consumption when it is not active.

Table 9. Power-down

PWD	Device function	Power dissipation (typ)
0	active	185 mW
1	not active	16.5 mW

10.9 Alternative parts

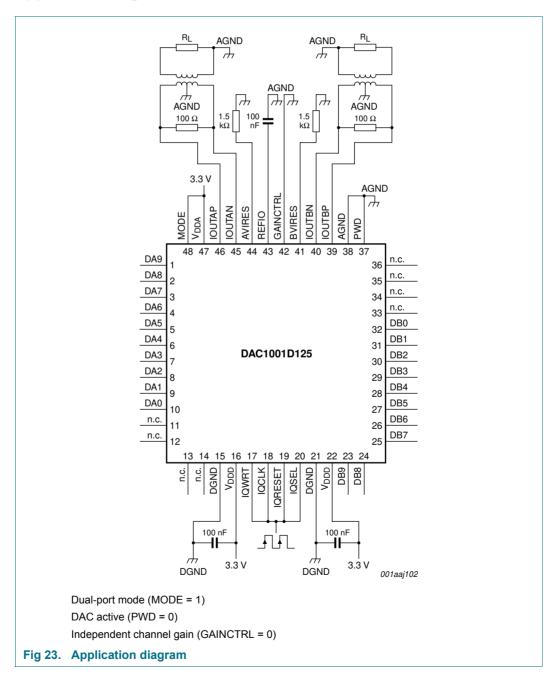
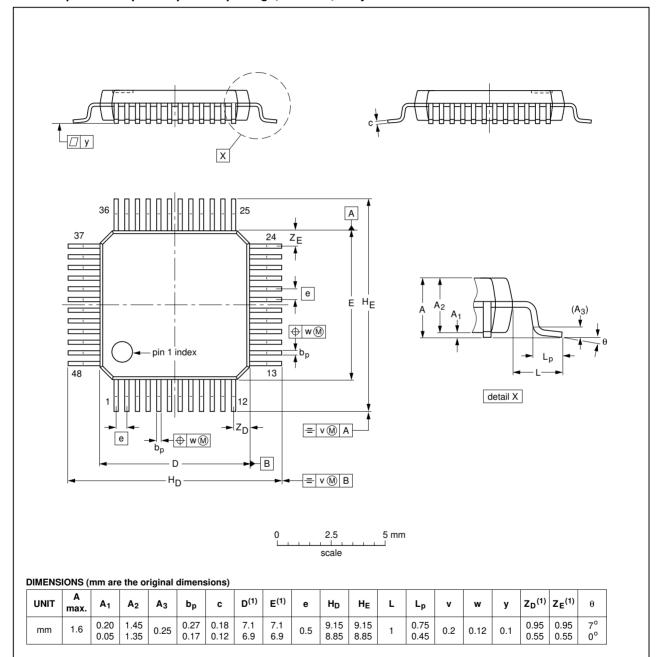

The following alternative parts are also available.

Table 10. Alternative parts

Pin compatible

Type number	Description	Sampling frequency
DAC1401D125	dual 14-bit DAC	up to 125 Msps
DAC1201D125	dual 12-bit DAC	up to 125 Msps


10.10 Application diagram

11. Package outline

LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm

SOT313-2

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT313-2	136E05	MS-026				00-01-19 03-02-25

Fig 24. Package outline SOT313-2 (LQFP48)

23 of 25

Dual 10-bit DAC, up to 125 Msps

12. Abbreviations

Product data sheet

Table 11. Abbreviations

Acronym	Description
BW	BandWidth
dBFS	deciBel Full Scale
DDS	Direct Digital frequency Synthesis
IF	Intermediate Frequency
LSB	Least Significant Bit
MSB	Most Significant Bit
SFDR	Spurious-Free Dynamic Range

13. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
DAC1001D125 v.3	20120702	Product data sheet	-	DAC1001D125 v.2
DAC1001D125 v.2	20120127	Product data sheet	-	DAC1001D125 v.1
Modifications: • Table 4 "Thermal characteristics" has been updated.				
 Section 10.6 "Gain control" has been updated. 				
DAC1001D125 v.1	20081124	Product data sheet	-	-

14. Contact information

For more information or sales office addresses, please visit: http://www.idt.com

DAC1001D125

Dual 10-bit DAC, up to 125 Msps

15. Contents

1	General description	1 10.2.2	Interleaved mode	16
2	Features and benefits	1 10.3	Timing	
3	Applications	1 10.4	DAC transfer function	
4	Ordering information	2 10.5	Full-scale current adjustment	
5	_	10.0	Gain control	
•	Block diagram	10.7	Analog outputs	19
6	Pinning information	3 10.7.1	Differential output using transformer	20
6.1	Pinning	3 10.7.2	Single-ended output	20
6.2	Pin description	3 10.8	Power-down function	20
7	Limiting values	5 10.9	Alternative parts	21
8	Thermal characteristics	5 ^{10.10}	Application diagram	21
9	Characteristics	44	Package outline	22
10	Application information	12	Abbreviations	23
10.1	General description	40	Revision history	24
10.2	Input data		Contact information	24
10.2.1	Dual-port mode	5 15	Contents	25