imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

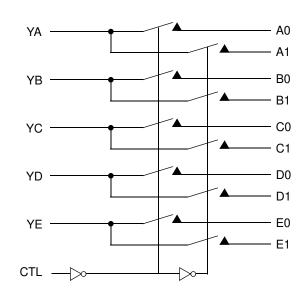
WIDE BANDWIDTH VIDEO SIGNAL SWITCH, 5 PORT

CONFIDENTIAL

IDTVS512

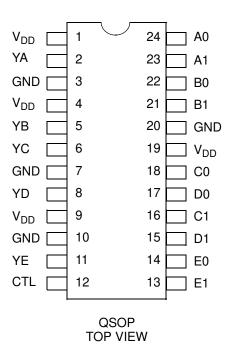
General Description

The IDTVS512 is a bi-directional 5-Port 2:1 multiplexer/demultiplexer with Hi-Z outputs for both RGB and composite video switching applications. With the additional two ports, vertical and horizontal synchronous signals can be switched in addition to switching the RGB and composite signals between different components (DVDs, VCRs, PCs, etc.). The VideoSwitch can be driven from a current output RAMDAC or voltage output composite video source.


Low on-resistance, low crosstalk, low OFF isolation and wide bandwidth features make it ideal for video and other applications. The IDTVS512 offers a high-performance (600 MHz), low-cost solution to switch between video sources.

Features

- Ron is 4Ω typical
- Bidirectional switch
- · Low bit-to-bit skew: 200ps
- Low crosstalk: -65dB @ 10MHz
- Near-Zero propagation delay: 250ps
- Fast switching speed: 9ns
- Channel On-Capacitance: 6pF (typical)
- 8KV ESD HBM on connector side
- Wide bandwidth (600 MHz)
- Available in QSOP package


Applications

- Projection TV and LCD TV
- Video consumer applications
- Analog video signal routing

Block Diagram

Pin Configuration

Absolute Maximum Ratings

Symbol	Rating	Min	Max ¹	Unit
TSTG	STG Storage Temperature Range		+150	°C
	Supply Voltage to GND Potential		+4	V
	DC Input Voltage	- 0.5	+5.5	V
	DC Output Current		120	mA
Power Dissipation		—	0.5	W

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Capacitance (TA = +25°C, f = 1.0MHz)

Symbol	Symbol Parameter		Тур	Max ¹	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$	2	3	pF
C _{OFF(IN0, IN1)}	Port I Capacitance, Switch OFF	$V_{IN} = 0V$	4	6	pF
C _{ON(Y/I)}	Y/I Port Capacitance, Switch ON	$V_{IN} = 0V$	6	10	pF

1. As applicable to the device type.

Pin Description

Name	Pin #	Function
V _{DD}	1, 4, 9, 19	Positive power supply
GND	3, 7, 10, 20	Ground
Xn	2, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24	Data and CLK
CTL	12	Control

Truth Table

Function	SEL
Yn to Y0	L
Yn to X1	Н

Dynamic Electrical Characteristics Over Operating Range

Following Conditions Apply Unless Otherwise Specified: $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 3.3V \pm 10\%$, GND = 0V.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
X _{TALK} ¹	Crosstalk	t = 10MHz	—	-65	—	dB
O _{IRR} ²	Off Isolation	t = 10MHz	_	-70		
B _W	Bandwidth - 3dB	$C_L = 0pF$		600		MHz

1. See CROSSTALK SETUP for Measurement Setup.

2. See OFF-ISOLATION SETUP for Measurement Setup.

DC Electrical Characteristics Over Operating Range

Following Conditions Apply Unless Otherwise Specified: TA = 0°C to +70°C, Vcc = $3.3V \pm 10\%$.

Symbol	Parameter	Conditions ¹	Min.	Typ. ²	Max.	Unit
V _{IH} ³	Input HIGH Voltage	Guaranteed Logic HIGH level	2	_	_	
V _{IL}	Input LOW Voltage	Guaranteed Logic LOW level	-0.5		0.8	V
V _{IK}	Clamp Diode Voltage	V _{CC} = Max., I _{IN} = -18mA		-0.7	-1.2	
I _{IH}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$	—	—	±5	μA
١ _{IL}	Input LOW Current	V _{CC} = Max., V _{IN} = GND	—	—	±5	
I _{OFF}	Power Down Leakage Current	$V_{CC} = 0V, \ V_A = 0V, \ V_B \leq 3.6$		—	_	
R _{ON} ⁴	Switch On-Resistance	V_{CC} = Min., $1.5 \leq V_{IN} \leq V_{CC}, \ I_{IN}$ = –40mA	—	4	8	
R _{FLAT(ON)}	On-Resistance Flatness	V_{CC} = Min., V_{IN} @ 1.5V and V_{CC}, I_{IN} = –40mA	—	1		Ω
ΔR_{ON}	On-Resistance match from center ports to any other port	$V_{CC} = Min., \ 1.5 \leq V_{IN} \leq V_{CC}, \ I_{IN} = -40mA$	—	0.9	2	

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$ ambient and maximum loading.

3. Measured by the voltage drop between Y and I pins at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (Y &I) pins.

4. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

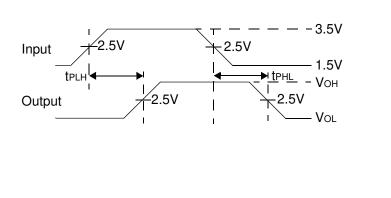
Symbol	Parameter	Conditions ¹	Min.	Typ. ²	Max.	Unit
I _{CC}	Quiescent Power Supply Current	V_{CC} = Max., V_{IN} = GND or V_{CC}		—	800	μA

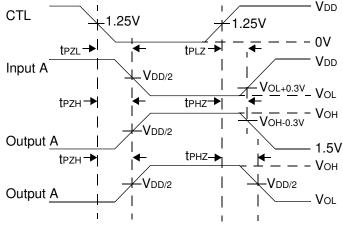
1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.

2. Typical values are at V_{CC} = 3.3V, $t_{\textrm{A}}$ = 25°C ambient and maximum loading.

Switching Characteristics Over Operating Range

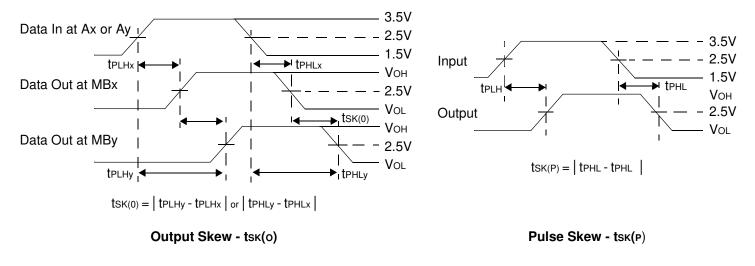
Following Conditions Apply Unless Otherwise Specified: TA = 0° C to $+70^{\circ}$ C. Vcc = $3.3V \pm 10^{\circ}$. GND = 0V.


Symbol	Description		Typ. ¹	Max.	Unit
t _{PD}	Propagation Delay ^{2,3}		0.25	—	ns
t _{PZH} , t _{PZL}	Line Enable Time - SEL to Yn, In	0.5		15	ns
t _{PHZ} , t _{PLZ}	Line Disable Time - SEL to Yn, In	0.5		9	ns
t _{SK(O)}	Output Skew between center port (YC to YD) to any other port(2)		0.1	0.2	ns
t _{SK(P)}	Skew between opposite transitions of the same output (tPHL- tPLH)(2)		0.1	0.2	ns


1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

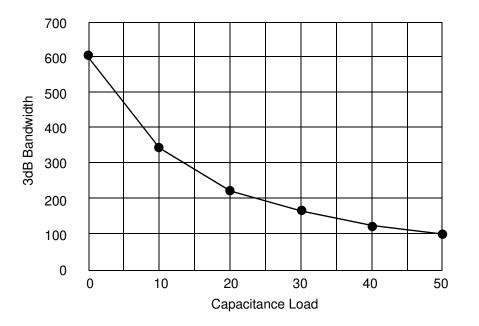
2. Guaranteed by design.,

3. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 10pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.


Switching Waveforms

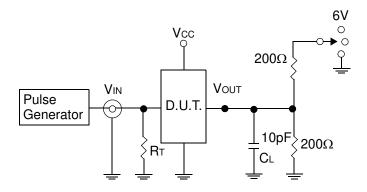
Voltage Waveforms Propagation Delay Times

Voltage Waveforms Enable and Disable Times


Applications Information

Logic Inputs

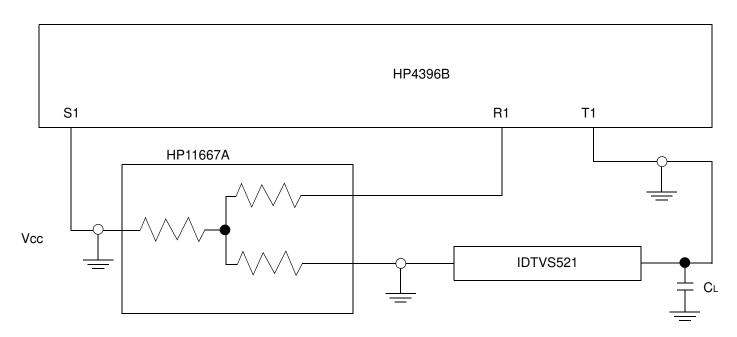
The logic control inputs can be driven up to +3.6V regardless of the supply voltage. For example, given a +3.3V supply, the output enables or select pins may be driven low to 0V and high to 3.6V. Driving IN Rail-to-RailÆ minimizes power consumption.


Power-supply Sequencing

Proper power-supply sequencing is advised for all CMOS devices. It is recommended to always apply V_{CC} before applying signals to the input/output or control pins.

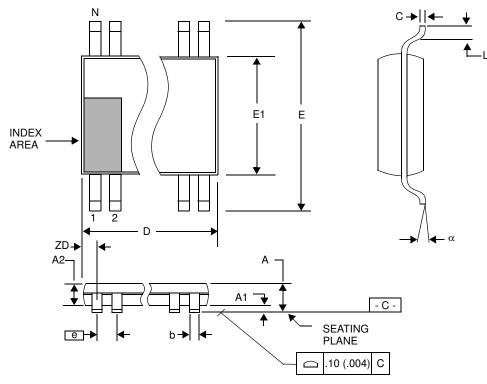
Bandwidth vs. Capacitance

Test Circuit For Electrical Characteristics



- 1 CL = Load capacitance: includes jig and probe capacitance.
- 2 RT = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.
- 3 Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 4 All input impulses are supplied by generators having the following characteristics: PRR \leq MHz, Zo = 50 Ω , tr \leq 2.5ns, tr \leq 2.5ns.
- 5 The outputs are measured one at a time with one transition per measurement.

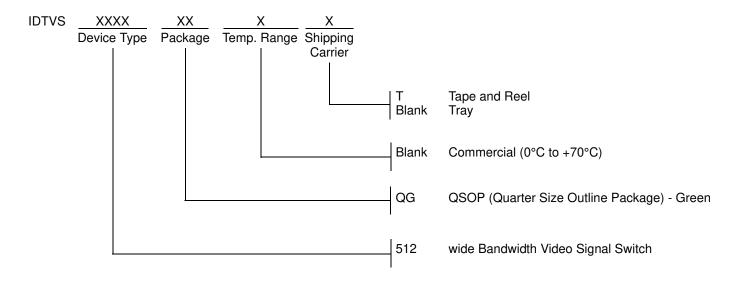
Switch Position


Test	Switch
t _{PZH} , t _{PZL} (output on I-side)	6V
t _{PHZ} , t _{PLZ} (output on I-side)	GND
Prop Delay	Open

Test Circuit for Dynamic Electrical Characteristics

Package Dimensions - QAOP

IDTVS512



150 mil SSOP (QSOP))

Symbol		In Millimeters Common Dimensions		ches mensions ¹	
	MIN	МАХ	MIN	MAX	
А	1.35	1.75	.053	.069	
A1	0.10	0.25	.004	.010	
A2	_	1.50	—	.059	
b	0.20	0.30	.008	.012	
С	0.18	0.25	007	.010	
D	8.55	8.75	.337	.344	
E	5.80	6.20	.228	.244	
E1	3.80	4.00	.150	.157	
е	.635	.635 BASIC		BASIC	
L	0.40	1.27	.016	.050	
Ν	2	24	24		
α	0°	8°	0°	8°	
ZD	0.84	REF	.394 REF		

1. For reference only. Controlling dimensions are in inches.

Ordering Information

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: email: videohelp@idt.com

© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA