Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! ## Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ## SiC Silicon Carbide Diode ## 2nd Generation thinQ!™ 2nd Generation thinQ!™ SiC Schottky Diode IDV04S60C ## **Data Sheet** Rev. 2.0, 2010-01-08 Final ## Industrial & Multimarket ### 2nd Generation thinQ!™ SiC Schottky Diode #### IDV04S60C ### 1 Description The second generation of Infineon SiC Schottky diodes has emerged over the years as the industry standard. The IDVxxS60C family is extending the already broad portfolio with the TO220FullPAK package. In order to greatly reduce the impact of the internal isolation of the FullPAK on the thermal performance, Infineon is applying it's new diffusion soldering process for attaching the chip to the leadframe. The result of this is nearly identical thermal characteristics to that of the SiC diodes in the non-isolated TO220 package. #### **Features** - · Revolutionary semiconductor material Silicon Carbide - · Nearly no reverse / forward recovery charge - High surge current capability - Fully isolated package with nearly similar Rth, jc as the standard T0220 - · Suitable for high temperature operation - Pb-free lead plating; RoHS compliant - Qualified according to JEDEC¹⁾ for target applications - Switching behavior independent of forward current, switching speed and temperature #### **Benefits** - System efficiency improvement over Si diodes - · System cost / size savings due to reduced cooling requirements - · Good thermal performance without the need for additional isolation layer and washer - Enabling higher frequency / increased power density solutions - · Higher system reliability due to lower operating temperatures and less fans - Reduced EMI #### **Applications** Fully isolated TO220 package for e.g. CCM PFC; Motor Drives; Solar Applications; UPS Table 1 Key Performance Parameters | Parameter | Value | Unit | |----------------------|-------|------| | $V_{ m DC}$ | 600 | V | | $Q_{\mathbb{C}}$ | 8 | nC | | $I_F @ T_C < 100$ °C | 4 | Α | Table 2 Pin Definition | Pin 1 | Pin2 | Pin 3 | |-------|------|-------| | С | Α | n.a. | | Type / Ordering Code | Package | Marking | Related Links | | |----------------------|------------------|---------|------------------------|--| | IDV04S60C | PG-TO220 FullPAK | D04S60C | IFX SiC Diodes Webpage | | ¹⁾ J-STD20 and JESD22 **Table of Contents** ## **Table of Contents** | 1 | Description | |---|-------------------------------------| | | Table of Contents | | 2 | Maximum ratings | | 3 | Thermal characteristics | | 4 | Electrical characteristics | | 5 | Electrical characteristics diagrams | | 6 | Package outlines | | 7 | Revision History | **Maximum ratings** ## 2 Maximum ratings Table 3 Maximum ratings | Parameter | Symbol Values | | | Unit | Note / Test Condition | | | |-------------------------------------|--------------------------|------|------|------|-----------------------|--|--| | | | Min. | Тур. | Max. | | | | | Continuous forward current | I _F | - | - | 4 | Α | T _C = < 110°C | | | Surge non-repetitive | I _{F, SM} | - | - | 32 | | $T_{\rm C}$ = 25°C, $t_{\rm p}$ = 10 ms | | | forward current, sine halfwave | | - | - | 23 | | $T_{\rm C}$ = 150°C, $t_{\rm p}$ = 10 ms | | | Non-repetitive peak forward current | I _{F, max} | - | - | 190 | | $T_{\rm C}$ = 25°C, $t_{\rm p}$ = 10 µs | | | i² t value | ∫i²dt | - | - | 4 | A ² s | $T_{\rm C}$ = 25°C, $t_{\rm p}$ = 10 ms | | | | | - | | 2 | | $T_{\rm C}$ = 150°C, $t_{\rm p}$ = 10 ms | | | Repetitive peak reverse voltage | V_{RRM} | - | - | 600 | V | <i>T</i> _j = 25°C | | | Diode dv/dt ruggedness | dv/dt | - | - | 50 | V/ns | V _R = 0480 V | | | Power dissipation | P _{tot} | - | - | 26 | W | <i>T</i> _C = 25 °C | | | Operating and storage temperature | $T_{\rm j};~T_{\rm stg}$ | - 55 | - | 175 | °C | | | | Mounting torque | | - | - | 50 | Ncm | M2.5 screws | | ## 3 Thermal characteristics Table 4 Thermal characteristics TO-220 FullPAK | Parameter | Symbol | Values | | | Unit | Note / | |--|------------|--------|------|------|------|---------------------------------------| | | | Min. | Тур. | Max. | | Test Condition | | Thermal resistance, junction - case | R_{thJC} | - | - | 5.6 | K/W | | | Thermal resistance, junction - ambient | R_{thJA} | - | - | 62 | | leaded | | Soldering temperature, wavesoldering only allowed at leads | T_{sold} | - | - | 260 | °C | 1.6 mm (0.063 in.) from case for 10 s | Final Data Sheet 4 Rev. 2.0, 2010-01-08 **Electrical characteristics** ### 4 Electrical characteristics Table 5 Static characteristics | Parameter | Symbol | Values | | | Unit | Note / Test Condition | |-----------------------|----------|--------|------|------|------|--| | | | Min. | Тур. | Max. | | | | DC blocking voltage | V_{DC} | 600 | - | - | V | $T_{\rm j}$ = 25 °C, $I_{\rm R}$ = 0.05 mA | | Diode forward voltage | V_{F} | - | 1.7 | 1.9 | | <i>I</i> _F = 4 A, <i>T</i> _j = 25 °C | | | | - | 2 | 2.4 | | I _F = 4 A, T _j = 150 °C | | Reverse current | I_{R} | - | 0.5 | 50 | μΑ | I _R = 600 V, T _j =25 °C | | | | - | 2 | 500 | | I _R = 600 V, T _j =150 °C | Table 6 AC characteristics | Parameter | Symbol | Values | | | Unit | Note / | |------------------------------|-------------|--------|------|------|------|--| | | | Min. | Тур. | Max. | | Test Condition | | Total capacitive charge | Q_{c} | - | 8 | - | nC | V _R = 400 V, F≤I F _{max} | | Switching time ¹⁾ | $t_{\rm c}$ | - | - | <10 | ns | $di_{\rm F}$ /dt =200 A/µs,
$T_{\rm i}$ =150 °C | | | C | - | 130 | - | pF | V _R = 1 V, <i>f</i> = 1 MHz | | | | - | 20 | - | | V _R = 300 V, f= 1 MHz | | | | - | 20 | - | | V _R = 600 V, f= 1 MHz | ¹⁾ t_c is the time constant for the capacitive displacement current waveform (independent from T_j , t_c), different from t_r which is dependent on t_r , t_c) and t_r due to absence of minority carrier injection. Final Data Sheet 5 Rev. 2.0, 2010-01-08 **Electrical characteristics diagrams** ## Electrical characteristics diagrams Table 7 5 Table 8 Final Data Sheet 6 Rev. 2.0, 2010-01-08 **Electrical characteristics diagrams** Table 9 ¹⁾ Only capacitive charge occuring, guaranteed by design Table 10 Final Data Sheet 7 Rev. 2.0, 2010-01-08 **Electrical characteristics diagrams** ### Table 11 Package outlines ## 6 Package outlines Figure 1 Outlines TO-220 FullPAK, dimensions in mm/inches Final Data Sheet 9 Rev. 2.0, 2010-01-08 **Revision History** ### 7 Revision History 2nd Generation thinQ!™ 2nd Generation thinQ!™ SiC Schottky Diode Revision History: 2010-01-08, Rev. 2.0 | /ious | | | |-------|--|--| | | | | | Revision | Subjects (major changes since last revision) | |----------|--| | 2.0 | Release of final data sheet | | | | | | | | | | #### We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com Edition 2010-01-08 Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved. #### **Legal Disclaimer** The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. #### Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). #### Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.