

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

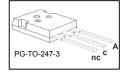
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Fast Switching EmCon Diode

Features:

- 600 V EmCon technology
- Fast recovery
- Soft switching
- Low reverse recovery charge
- Low forward voltage
- 175 °C junction operating temperature
- Easy paralleling
- Pb-free lead plating; RoHS compliant
- Complete product spectrum and PSpice Models: http://www.infineon.com/emcon/

Applications:

- Welding
- Motor drives

Туре	V_{RRM}	I _F	V _{F,Tj=25°C}	$T_{j,max}$	Marking	Package
IDW100E60	600V	100A	1.65V	175°C	D100E60	PG-TO-247-3

Maximum Ratings

Parameter	Symbol	Value	Unit	
Repetitive peak reverse voltage	V_{RRM}	600	V	
Continuous forward current	I _F		Α	
<i>T</i> _C = 25°C		150		
$T_{\rm C}$ = 90°C		104		
$T_{\rm C}$ = 100°C		96		
Surge non repetitive forward current	I _{FSM}	400	Α	
$T_{\rm C}$ = 25°C, $t_{\rm p}$ = 10 ms, sine halfwave				
Maximum repetitive forward current	I _{FRM}	300	Α	
$T_{\rm C}$ = 25°C, $t_{\rm p}$ limited by $t_{\rm j,max}$, D = 0.5				
Power dissipation	P _{tot}		W	
$T_{\rm C}$ = 25°C		375		
<i>T</i> _C = 90°C		212		
$T_{\rm C}$ = 100°C		198		
Operating junction and storage temperature	$T_{j,} T_{stg}$	-55+175	°C	
Soldering temperature 1.6mm (0.063 in.) from case for 10 s	Ts	260	°C	

Thormal	Resistance
ınermai	Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				•
Thermal resistance,	R_{thJC}		0.40	K/W
junction – case				
Thermal resistance,	R_{thJA}		40	
junction – ambient				

Electrical Characteristic, at T_j = 25 °C, unless otherwise specified

Davameter	Symbol	Conditions	Value			11
Parameter			min.	typ.	max.	Unit
Static Characteristic						
Collector-emitter breakdown voltage	V_{RRM}	I _R =0.25mA	600	-	-	V
Diode forward voltage	V_{F}	$I_{\rm F} = 100 {\rm A}$				
		<i>T</i> _j =25°C	-	1.65	2.0	
		<i>T</i> _j =175°C	-	1.65	-	
Reverse leakage current	I_{R}	V _R =600V				μΑ
		<i>T</i> _j =25°C	-	-	40	
		<i>T</i> _j =175°C	-	-	1000	
Dynamic Electrical Characteristics		,				
Diode reverse recovery time	t_{rr}	<i>T</i> _j =25°C	-	120	-	ns
Diode reverse recovery charge	Q_{rr}	V _R =400V,	-	3.6	-	μC
Diode peak reverse recovery current	I_{rr}	$I_{\rm F}$ =100A,	-	49.5	-	Α
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	dI _{rr} /dt	<i>dI_F/dt</i> =1200A/μs	-	750	-	A/µs
Diode reverse recovery time	t_{rr}	<i>T</i> _j =125°C	-	168	-	ns
Diode reverse recovery charge	Q _{rrm}	V _R =400V,	-	5.8	-	μC
Diode peak reverse recovery current	I_{rr}	$I_{\rm F} = 100 {\rm A}$	-	61.6	-	Α
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	dI _{rr} /dt	$dI_{\rm F}/dt$ =1200A/ μ s	-	705	-	A/µs
Diode reverse recovery time	t_{rr}	<i>T</i> _j =175°C	-	200	-	ns
Diode reverse recovery charge	Q _{rrm}	V _R =400V,	-	7.8	-	μC
Diode peak reverse recovery current	I_{rr}	$I_{\rm F} = 100 {\rm A}$	-	67.0	-	Α
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	dI _{rr} /dt	$dI_{\rm F}/dt$ =1200A/ μ s	-	650	-	A/µs

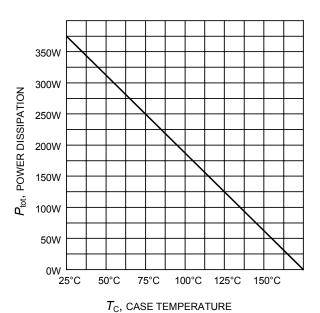
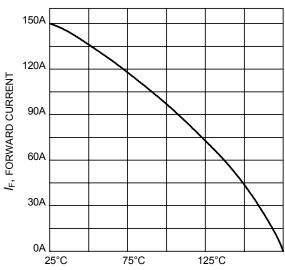



Figure 1. Power dissipation as a function of case temperature $(T_i \le 175^{\circ}\text{C})$

 $T_{\rm C}$, CASE TEMPERATURE Figure 2. Diode forward current as a function of case temperature $(T_{\rm i} \le 175^{\circ}{\rm C})$

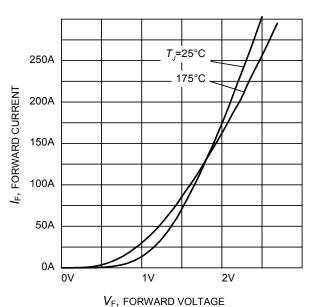
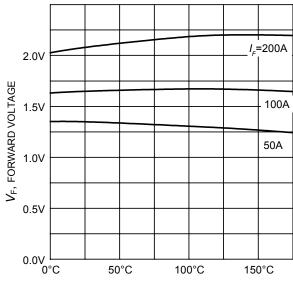
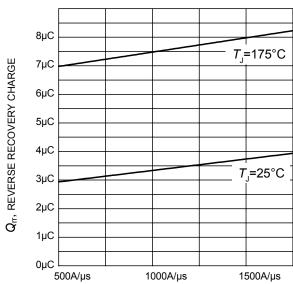




Figure 3. Typical diode forward current as a function of forward voltage


T_J, JUNCTION TEMPERATURE
Figure 4. Typical diode forward voltage as a function of junction temperature

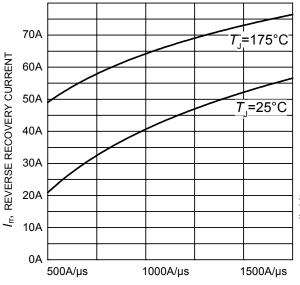
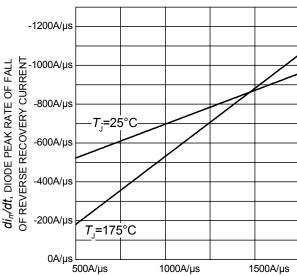

di_F/dt, DIODE CURRENT SLOPE

Figure 5. Typical reverse recovery time as a function of diode current slope $(V_R=400V, I_F=100A, Dynamic test circuit in Figure E)$

di_F/dt, DIODE CURRENT SLOPE


Figure 6. Typical reverse recovery charge as a function of diode current slope $(V_R = 400V, I_F = 100A, Dynamic test circuit in Figure E)$

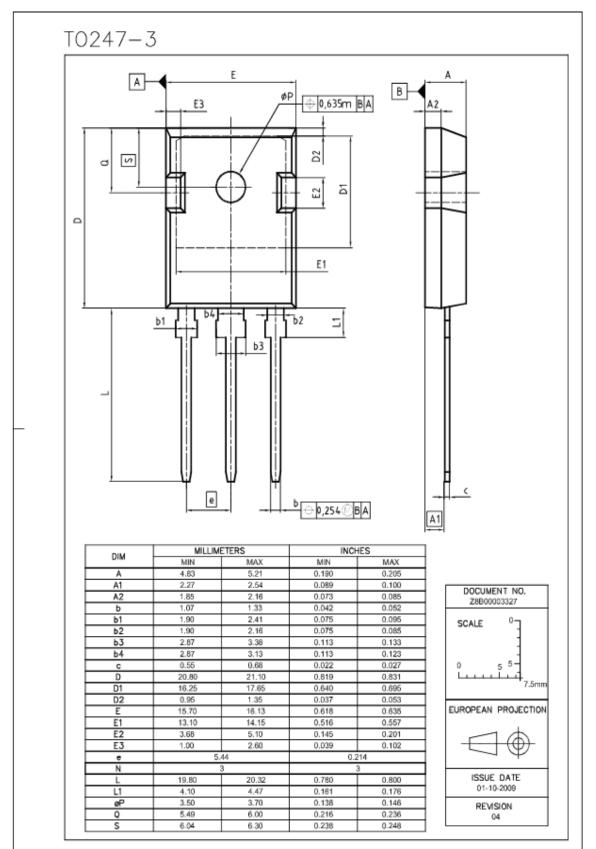
 $di_{\rm F}/dt$, DIODE CURRENT SLOPE

Figure 7. Typical reverse recovery current as a function of diode current slope

 $(V_R = 400V, I_F = 100A,$ Dynamic test circuit in Figure E)

 $di_{\rm F}/dt$, DIODE CURRENT SLOPE

Figure 8. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (V_R =400V, I_F =100A, Dynamic test circuit in Figure E)



 $\emph{t}_{\mathsf{P}},\,\mathsf{PULSE}\,\mathsf{WIDTH}$

Figure 9. Diode transient thermal impedance as a function of pulse width $(D=t_P/T)$

Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.