imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

High Speed CAN-Transceiver

Data Sheet

Rev. 1.0, 2009-05-14

Standard Products

Table of Contents

Table of Contents

1	Overview	3
2	Block Diagram	4
3 3.1 3.2	Pin Configuration Pin Assignment Pin Definitions and Functions	5
4 4.1 4.2 4.3	Operation Modes Normal Mode Stand - By Mode Receive - Only Mode	6 6
5 5.1 5.2 5.3	Electrical Characteristics Absolute Maximum Ratings Functional Range Thermal Resistance	7 7
6	Electrical Characteristics	8
7 7.1	Application Information Further Application Information	
8	Package Outlines	13
9	Revision History	

High Speed CAN-Transceiver

IFX1050G

Overview 1

Features

- CAN data transmission rates from 1 kBaud up to 1 MBaud
- Receive Only Mode and Stand By Mode
- Optimized Electromagnetic Compatibility (EMC) Optimized for a high immunity against ٠
- Electromagnetic Interference (EMI) Bus pins are short circuit proof
- Over temperature protection
- Very wide temperature range (-40 °C up to 125 °C)
- Green Product (RoHS compliant)

The IFX1050G is optimized for high speed differential mode data transmission in industrial applications and it is compliant to ISO11898-2. The transceiver IFX1050G works as an interface between the CAN protocol controller and the physical differential bus in High Speed CAN applications. It supports data transmission rates from 1 kBaud up to 1 MBaud.

The IFX1050G has three different operation modes:

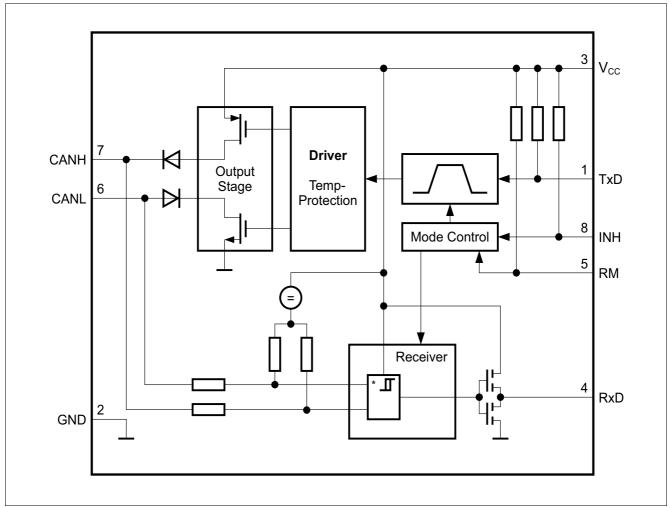
The Normal Mode, the Receive - Only Mode and the Stand - By Mode. The mode selection is controlled by the logical input pins RM and INH.

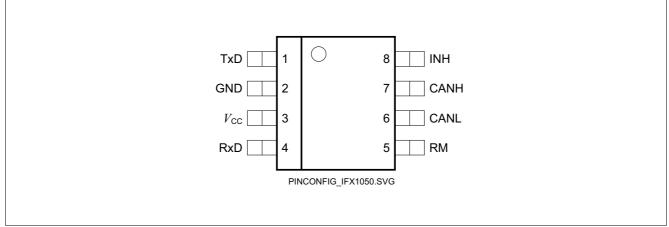
The IC is based on the Smart Power Technology SPT[®] which allows bipolar and CMOS control circuitry in accordance with DMOS power devices existing on the same monolithic circuit. The IFX1050G is designed to withstand the severe conditions in industrial applications and provides excellent EMC performance within a broad frequency range.

Туре	Package	Marking
IFX1050G	PG-DSO-8	IFX1050G

Block Diagram

2 Block Diagram



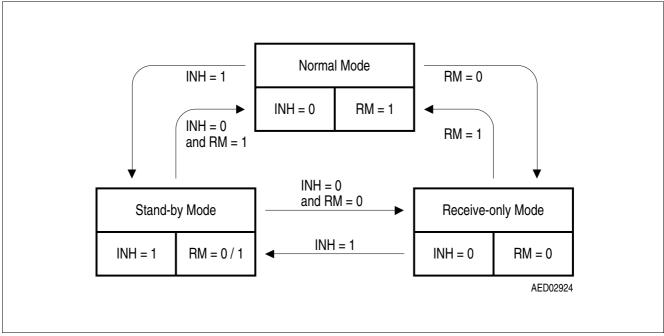

Figure 1 Block Diagram

Pin Configuration

3 Pin Configuration

3.1 Pin Assignment

Figure 2 Pin Configuration


3.2 Pin Definitions and Functions

Pin	Symbol	Function
1	TxD	CAN transmit data input;
		20 k Ω pull - up, "LOW" in dominant state
2	GND	Ground
3	V _{CC}	5 V Supply input
4	RxD	CAN receive data output;
		"LOW" in dominant state,
		integrated pull - up
5	RM	Receive - Only input;
		control input, integrated 20 k Ω pull - up,
		"LOW" to activate Receive - Only Mode
6	CANL	Low line I/O;
		"LOW" in dominant state
7	CANH	High line I/O;
		"HIGH" in dominant state
8	INH	Inhibit Input;
		control input, 20 k Ω pull - up,
		"LOW" to activate Normal Mode

Operation Modes

4 Operation Modes

Figure 3 Mode State Diagram

The IFX1050G is equipped with three different operation modes.

4.1 Normal Mode

In the Normal Mode the device is able to receive data from the CAN bus and to transmit messages to the CAN bus. The IFX1050G enters Normal Mode by setting the INH input to logical "LOW" and the RM input to logical "HIGH" (see Figure 3).

4.2 Stand - By Mode

Stand - By Mode is a Low - Power mode with reduced current consumption on the power supply V_{CC} . In Stand - By Mode the receiver and the transceiver of the IFX1050G are disabled and the device can not receive any data from the CAN bus, nor transmit any data to the CAN bus. The IFX1050G enters Stand - By Mode by setting the INH input to logical "HIGH" (see Figure 3).

When the Stand - By mode is not used the INH pin has to be connected to GND in order to switch the IFX1050G permanently into Normal Mode.

4.3 Receive - Only Mode

The Receive - Only Mode can be used for diagnostic purposes (to check the bus connections between the nodes) as well as to prevent the bus being blocked by a faulty permanent dominant TxD input signal. In Receive - Only Mode the output stage of the transceiver IFX1050G is disabled. The IFX1050G can not send any data to the CAN bus, but is still able to receive data from the CAN bus. The IFX1050G enters Receive - Only Mode by setting the RM input and the INH input to logical "LOW" (see Figure 3).

In case the Receive - Only Mode is not used, the RM pin can be left open or it can be also connected to the power supply $V_{\rm CC}$.

5.1 Absolute Maximum Ratings

Table 1 Absolute Maximum Ratings

Parameter	Symbol	Limit Values		Unit	Remarks
		Min.	Max.		
Voltages	- H				
Supply voltage	V _{CC}	-0.3	6.5	V	-
CAN input voltage (CANH, CANL)	$V_{\rm CANH/L}$	-40	40	V	-
Logic voltages at INH, RM, TxD, RxD	V	-0.3	V _{CC}	V	0 V < V _{CC} < 5.5 V
Electrostatic discharge voltage at CANH, CANL	V _{ESD}	-6	6	kV	human body model (100 pF via 1.5 kΩ)
Electrostatic discharge voltage	V _{ESD}	-2	2	kV	human body model (100 pF via 1.5 kΩ)
Temperatures	1	-			
Junction temperature	$T_{\rm i}$	-40	160	°C	_

Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

5.2 Functional Range

Table 2Functional Range

Parameter	Symbol	Limit Values		Unit	Remarks
		Min.	Max.		
Supply voltage	V _{CC}	4.5	5.5	V	-
Junction temperature	Ti	-40	125	°C	-
Thermal Shutdown (junction temp	erature)		L	1	
Thermal shutdown temperature	T _{isD}	160	200	°C	10 °C hysteresis

Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table.

5.3 Thermal Resistance

Pos.	Parameter	Symbol	Limit Values			Unit	Conditions
			Min.	Тур.	Max.		
5.3.1	Junction to Ambient ¹⁾	R _{thJA}	-	-	185	K/W	

1) Not subject to production test, specified by design.

6 Electrical Characteristics

Table 3 Electrical Characteristics

4.5 V < V_{CC} < 5.5 V; R_{L} = 60 Ω ; V_{INH} < $V_{INH,ON}$; -40 °C < T_{j} < 125 °C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified.

Parameter	Symbol	Li	mit Val	ues	Unit	Remarks
		Min.	Тур.	Max.		
Current Consumption					·	
Current consumption	I _{CC}	-	6	10	mA	Recessive state;
						$V_{TxD} = V_{CC}$
Current consumption	I _{CC}	-	45	70	mA	Dominant state;
						$V_{TxD} = 0 V$
Current consumption	I _{CC}	-	6	10	mA	Receive - Only Mode;
						RM = "LOW"
Current consumption	$I_{\rm CC,stb}$	-	1	10	μA	Stand - By Mode;
						TxD = RM = "High"
Receiver Output RxD						
HIGH level output current	$I_{\rm RD,H}$	-	-4	-2	mA	$V_{\rm RD}$ = 0.8 × $V_{\rm CC}$,
						$V_{\rm diff} < 0.4 \ {\rm V}^{1)}$
LOW level output current	$I_{\rm RD,L}$	2	4	-	mA	$V_{\rm RD}$ = 0.2 × $V_{\rm CC}$,
						$V_{\rm diff}$ > 1 V ¹⁾
Transmission Input TxD						
HIGH level input voltage threshold	$V_{\rm TD,H}$	-	0.5 imes	$0.7 \times$	V	Recessive state
			V _{CC}	V _{CC}		
LOW level input voltage threshold	$V_{\rm TD,L}$	0.3×	0.4 imes	-	V	Dominant state
		V _{CC}	V _{CC}			
TxD pull-up resistance	$R_{\rm TD}$	10	25	50	kΩ	-
Inhibit Input (pin INH)						
HIGH level input voltage threshold	$V_{\rm INH,H}$	-	0.5 imes	0.7 ×	V	Stand - By Mode;
			V_{CC}	V_{CC}		
LOW level input voltage threshold	$V_{\rm INH,L}$	0.3×	0.4 imes	-	V	Normal Mode
		V _{CC}	V_{CC}			
INH pull-up resistance	R _{INH}	10	25	50	kΩ	-
Receive only Input (pin RM)	·					
HIGH level input voltage threshold	$V_{\rm RM,H}$	-	0.5 imes	0.7 ×	V	Normal Mode
			$V_{\rm CC}$	$V_{\rm CC}$		
LOW level input voltage threshold	$V_{\rm RM,L}$	0.3 imes	0.4 imes	-	V	Receive - Only Mode
	,	V _{CC}	$V_{\rm CC}$			
RM pull-up resistance	R _{RM}	10	25	50	kΩ	_

Table 3 Electrical Characteristics (cont'd)

4.5 V < V_{CC} < 5.5 V; R_{L} = 60 Ω ; V_{INH} < $V_{INH,ON}$; -40 °C < T_{j} < 125 °C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified.

Parameter	Symbol	Limit Values			Unit	Remarks	
		Min.	Тур.	Max.			
Bus Receiver							
Differential receiver threshold voltage, recessive to dominant edge	$V_{\rm diff,d}$	-	0.75	0.90	V	$-7 V < (V_{CANH}, V_{CANL}) < 12 V$	
Differential receiver threshold voltage dominant to recessive edge	$V_{\rm diff,r}$	0.50	0.60	-	V	$V_{\text{diff}} = V_{\text{CANH}} - V_{\text{CANL}}$ $-7 \vee < (V_{\text{CANH}}, V_{\text{CANL}}) < 12 \vee$ $V_{\text{diff}} = V_{\text{CANH}} - V_{\text{CANL}}$	
Common Mode Range	CMR	-7	_	12	V	$V_{\rm CC}$ = 5 V	
Differential receiver hysteresis	$V_{\rm diff,hys}$	_	150	-	mV	-	
CANH, CANL input resistance	R _i	10	20	30	kΩ	Recessive state	
Differential input resistance	R _{diff}	20	40	60	kΩ	Recessive state	
Bus Transmitter	<u> </u>		-	-+			
CANL/CANH recessive output voltage	$V_{CANL/H}$	$0.4 imes V_{CC}$	-	$0.6 imes V_{CC}$	V	$V_{TxD} = V_{CC}$	
CANH, CANL recessive output voltage difference $V_{diff} = V_{CANH} - V_{CANL}$, no load	$V_{\rm diff}$	-1	-	0.05	V	$V_{TxD} = V_{CC}$	
CANL dominant output voltage	V _{CANL}	-	-	2.0	V	$V_{\text{TxD}} = 0 \text{ V};$ $V_{\text{CC}} = 5 \text{ V}$	
CANH dominant output voltage	V _{CANH}	2.8	-	-	V	$V_{\text{TxD}} = 0 \text{ V};$ $V_{\text{CC}} = 5 \text{ V}$	
CANH, CANL dominant output voltage difference $V_{\text{diff}} = V_{\text{CANH}} - V_{\text{CANL}}$	$V_{\rm diff}$	1.5	-	3.0	V	$V_{\text{TxD}} = 0 \text{ V};$ $V_{\text{CC}} = 5 \text{ V}$	
CANL short circuit current	I_{CANLsc}	50	120	200	mA	V _{CANLshort} = 18 V	
CANH short circuit current	I_{CANHsc}	-200	-120	-50	mA	$V_{\text{CANHshort}} = 0 \text{ V}$	
Output current CANH / CANL	$I_{\rm CANH/L,lk}$	-50	-300	-400	μA	$V_{\rm CC}$ = 0 V, $V_{\rm CANH}$ = $V_{\rm CANL}$ = -7 V	
		-50	-100	-150	μA	$V_{\rm CC} = 0 V,$ $V_{\rm CANH} = V_{\rm CANL} = -2 V$	
Output current CANH / CANL	$I_{\rm CANH/L,lk}$	50	280	400	μA	$V_{\rm CC} = 0 V,$ $V_{\rm CANH} = V_{\rm CANL} = 7 V$	
		50	100	150	μA	$V_{\rm CC} = 0 V,$ $V_{\rm CANH} = V_{\rm CANL} = 2 V$	

Table 3 Electrical Characteristics (cont'd)

4.5 V < V_{CC} < 5.5 V; R_{L} = 60 Ω ; V_{INH} < $V_{INH,ON}$; -40 °C < T_{j} < 125 °C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified.

Parameter	Symbol	Li	mit Val	ues	Unit	Remarks
		Min.	Тур.	Max.		
Dynamic CAN-Transceiver Character	istics		1	l.		
Propagation delay TxD-to-RxD LOW (recessive to dominant)	t _{d(L),TR}	-	150	280	ns	C_{L} = 47 pF; R_{L} = 60 Ω; V_{CC} = 5 V; C_{RxD} = 20 pF
Propagation delay TxD-to-RxD HIGH (dominant to recessive)	t _{d(H),TR}	-	150	280	ns	C_{L} = 47 pF; R_{L} = 60 Ω ; V_{CC} = 5 V; C_{RxD} = 20 pF
Propagation delay TxD LOW to bus dominant	t _{d(L),T}	-	100	140	ns	$C_{L} = 47 \text{ pF};$ $R_{L} = 60 \Omega;$ $V_{CC} = 5 V$
Propagation delay TxD HIGH to bus recessive	t _{d(H),T}	-	100	140	ns	$C_{L} = 47 \text{ pF};$ $R_{L} = 60 \Omega;$ $V_{CC} = 5 V$
Propagation delay bus dominant to RxD LOW	t _{d(L),R}	-	50	140	ns	C_{L} = 47 pF; R_{L} = 60 Ω ; V_{CC} = 5 V; C_{RxD} = 20 pF
Propagation delay bus recessive to RxD HIGH	t _{d(H),R}	-	50	140	ns	C_{L} = 47 pF; R_{L} = 60 Ω ; V_{CC} = 5 V; C_{RxD} = 20 pF

1) $V_{\text{diff}} = V_{\text{CANH}} - V_{\text{CANL}}$

Electrical Characteristics

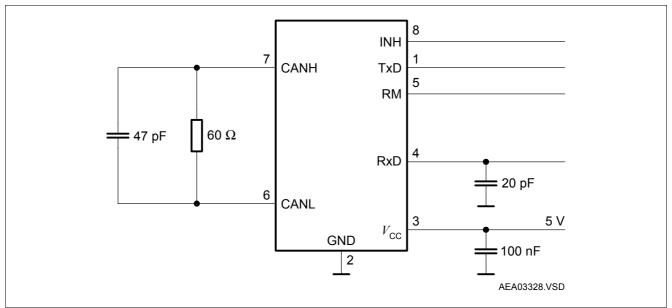


Figure 4 Test Circuit for Dynamic Characteristics

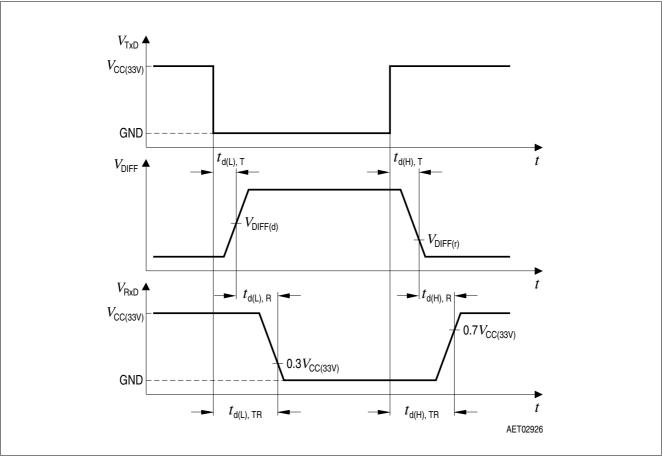


Figure 5 Timing Diagrams for Dynamic Characteristics

Application Information

7 Application Information

Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

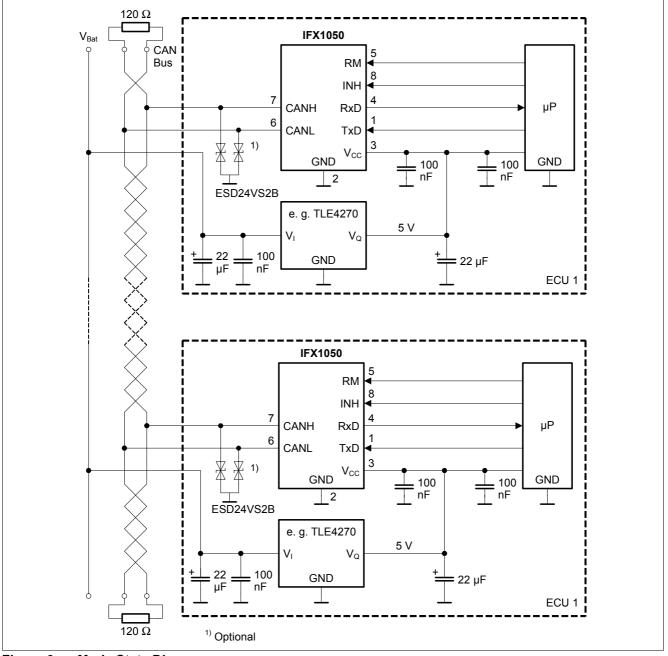
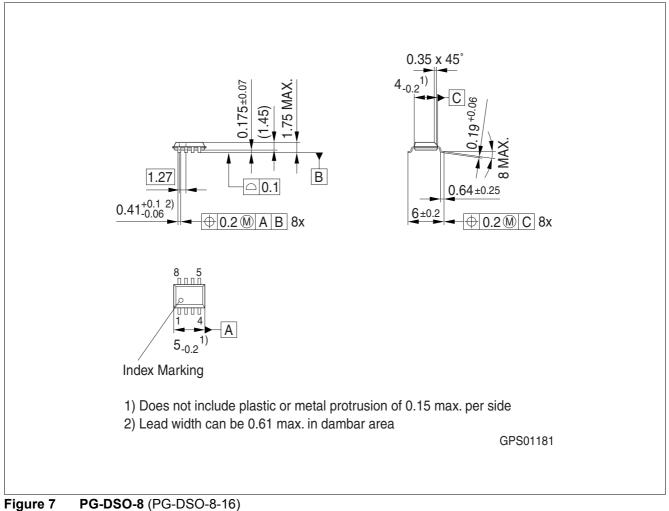


Figure 6 Mode State Diagram

Note: This is a very simplified example of an application circuit. The function must be verified in the real application.


7.1 Further Application Information

- Please contact us for information regarding the Pin FMEA.
- Existing App. Note
- · For further information you may contact http://www.infineon.com/

Package Outlines

8 Package Outlines

.....

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

For further information on alternative packages, please visit our website: http://www.infineon.com/packages.

Revision History

9 Revision History

Revision	Date	Changes
1.0	2009-05-12	Initial data sheet

Edition 2009-05-14

Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.