imall

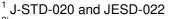
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


Low Loss IGBT in TrenchStop[®] and Fieldstop technology

- Short circuit withstand time $-10\mu s$
- Designed for :
 - Frequency Converters
 - Uninterrupted Power Supply
- TrenchStop[®] and Fieldstop technology for 1200 V applications offers :
 - very tight parameter distribution
 - high ruggedness, temperature stable behavior
- NPT technology offers easy parallel switching capability due to positive temperature coefficient in V_{CE(sat)}
- Low EMI
- Low Gate Charge
- Qualified according to JEDEC¹ for target applications
- Pb-free lead plating; RoHS compliant
- Complete product spectrum and PSpice Models : <u>http://www.infineon.com/igbt/</u>

Туре	V _{CE}	I _c	V _{CE(sat), Tj=25℃}	T _{j,max}	Marking Code	Package
IGW40T120	1200V	40A	1.7V	150°C	G40T120	PG-TO-247-3

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CE}	1200	V
DC collector current	I _C		А
$T_{\rm C} = 25^{\circ}{\rm C}$		75	
$T_{\rm C} = 100^{\circ}{\rm C}$		40	
Pulsed collector current, t_p limited by T_{jmax}	I _{Cpuls}	105	
Turn off safe operating area	-	105	
$V_{CE} \le 1200 V, \ T_j \le 150^\circ C$			
Gate-emitter voltage	V _{GE}	±20	V
Short circuit withstand time ²⁾	tsc	10	μS
$V_{ m GE}$ = 15V, $V_{ m CC}$ \leq 1200V, $T_{ m j}$ \leq 150°C			
Power dissipation	P _{tot}	270	W
$T_{\rm C} = 25^{\circ}{\rm C}$			
Operating junction temperature	Tj	-40+150	°C
Storage temperature	$T_{\rm stg}$	-55+150	
Soldering temperature, 1.6mm (0.063 in.) from case for 10s	-	260	

²⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

-TO-247-3

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				
IGBT thermal resistance,	R _{thJC}		0.45	K/W
junction – case				
Thermal resistance,	R _{thJA}		40	
junction – ambient				

Electrical Characteristic, at $T_j = 25$ °C, unless otherwise specified

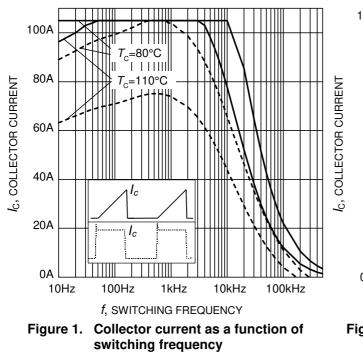
Parameter	Symbol	Conditions	Value			linit
Parameter	Symbol		min.	typ.	max.	Unit
Static Characteristic						
Collector-emitter breakdown voltage	$V_{(BR)CES}$	$V_{\rm GE} = 0V, I_{\rm C} = 1.5 {\rm mA}$	1200	-	-	V
Collector-emitter saturation voltage	V _{CE(sat)}	$V_{\rm GE} = 15 \rm V, \ I_{\rm C} = 40 \rm A$				
		<i>T</i> _j =25°C	-	1.7	2.3	
		<i>T</i> _j =125°C	-	2.1	-	
		<i>T</i> _j =150°C	-	2.3	-	
Gate-emitter threshold voltage	V _{GE(th)}	$I_{\rm C}=1.5$ mA, $V_{\rm CE}=V_{\rm GE}$	5.0	5.8	6.5	
Zero gate voltage collector current	I _{CES}	V _{CE} =1200V, V _{GE} =0V				mA
		<i>T</i> _j =25°C	-	-	0.4	
		<i>T</i> _j =150°C	-	-	4.0	
Gate-emitter leakage current	I _{GES}	$V_{\rm CE} = 0 \rm V, V_{\rm GE} = 20 \rm V$	-	-	600	nA
Transconductance	$g_{ m fs}$	$V_{\rm CE} = 20 \text{V}, \ I_{\rm C} = 40 \text{A}$	-	21	-	S
Integrated gate resistor	R _{Gint}			6		Ω

Dynamic Characteristic

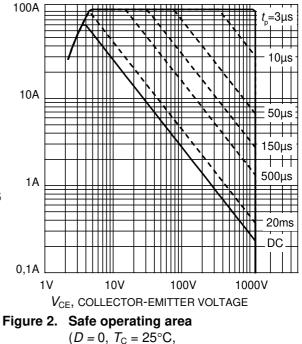
	6			2500		ъГ
Input capacitance	Ciss	$V_{CE}=25V$,	-	2500	-	pF
Output capacitance	Coss	$V_{\rm GE}=0V$,	-	130	-	
Reverse transfer capacitance	Crss	f=1MHz	-	110	-	
Gate charge	Q _{Gate}	$V_{\rm CC} = 960 \text{V}, \ I_{\rm C} = 40 \text{A}$	-	203	-	nC
		$V_{GE} = 15 V$				
Internal emitter inductance	L _E		-	13	-	nH
measured 5mm (0.197 in.) from case						
Short circuit collector current ¹⁾	I _{C(SC)}	$V_{GE} = 15V, t_{SC} \le 10 \mu s$ $V_{CC} = 600V,$ $T_{j} = 25^{\circ}C$	-	210	-	A

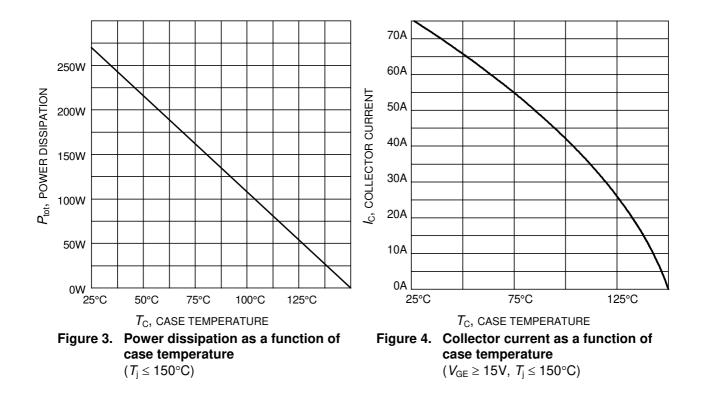
Switching Characteristic, Inductive Load, at Tj=25 °C

Parameter	Symbol	Conditions	Value			l lmit
Parameter			min.	typ.	max.	Unit
IGBT Characteristic						
Turn-on delay time	t _{d(on)}	<i>T</i> _j =25°C,	-	48	-	ns
Rise time	tr	$V_{CC} = 600V, I_C = 40A,$ $V_{GE} = 0/15V,$ $R_G = 15\Omega,$ $L_{\sigma}^{(2)} = 180nH,$ $C_{\sigma}^{(2)} = 39pF$ Energy losses include "tail" and diode reverse recovery.	-	34	-	
Turn-off delay time	t _{d(off)}		-	480	-	
Fall time	t _f		-	70	-	
Turn-on energy	Eon		-	3.3	-	mJ
Turn-off energy	E _{off}		-	3.2	-	
Total switching energy	Ets		-	6.5	-	1

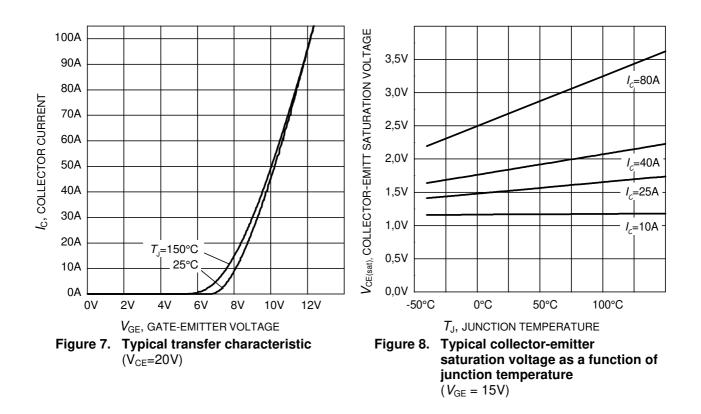

Switching Characteristic, Inductive Load, at $T_i=150$ °C

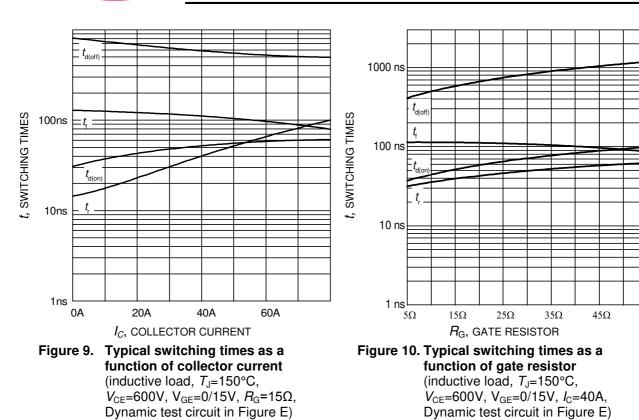
Parameter	Symbol	Conditions	Value			Unit
Parameter			min.	typ.	max.	Unit
IGBT Characteristic						
Turn-on delay time	t _{d(on)}	<i>T</i> _j =150°C	-	52	-	ns
Rise time	t _r	$V_{\rm CC} = 600 \text{V}, I_{\rm C} = 40 \text{A},$	-	40	-	
Turn-off delay time	$t_{d(off)}$	V _{GE} =0/15V, R _G = 15Ω,	-	580	-	
Fall time	tf	$L_{\sigma}^{(2)} = 180 \text{ nH},$	-	120	-	
Turn-on energy	Eon	$C_{\sigma}^{(2)}$ =39pF	-	5.0	-	mJ
Turn-off energy	E _{off}	Energy losses include "tail" and diode	-	5.4	-	
Total switching energy	E _{ts}	reverse recovery.	-	10.4	-	

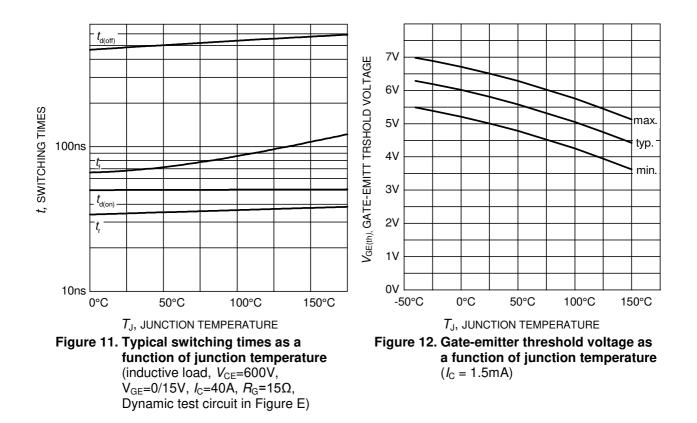

¹⁾ Allowed number of short circuits: <1000; time between short circuits: >1s. ²⁾ Leakage inductance L_{σ} and Stray capacity C_{σ} due to dynamic test circuit in Figure E.


TrenchStop[®] Series

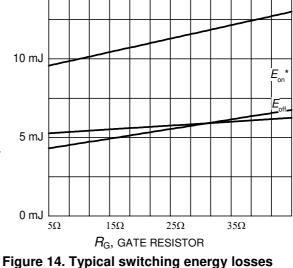
 $(T_{\rm j} \le 150^{\circ}{\rm C}, D = 0.5, V_{\rm CE} = 600{\rm V}, V_{\rm GE} = 0/+15{\rm V}, R_{\rm G} = 15\Omega)$


 $T_{\rm j} \le 150^{\circ}{\rm C}; V_{\rm GE} = 15{\rm V})$

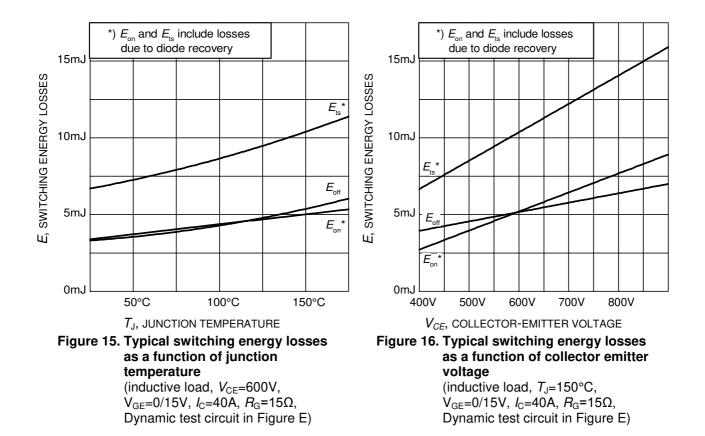

TrenchStop[®] Series


100A 100A 90A 90A 80A $V_{\rm GE}$ =17V 80A $V_{\text{GE}} = 17 \text{V}_{\text{SE}}$ Ic, COLLECTOR CURRENT Ic, COLLECTOR CURRENT 5V 5V-70A 70A 13V 13V 60A 60A 11V 11V 50A 50A 9ν 9V 40A 40A 30A 30A 20A 20A 10A 10A 0A 0A 1V 0V 1V 2V ЗV 4V 5V 6V 2V ЗV 4V 5V 6V 0V V_{CE} , COLLECTOR-EMITTER VOLTAGE V_{CE} , COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristic Figure 6. Typical output characteristic $(T_{i} = 25^{\circ}C)$ $(T_{i} = 150^{\circ}C)$

TrenchStop[®] Series

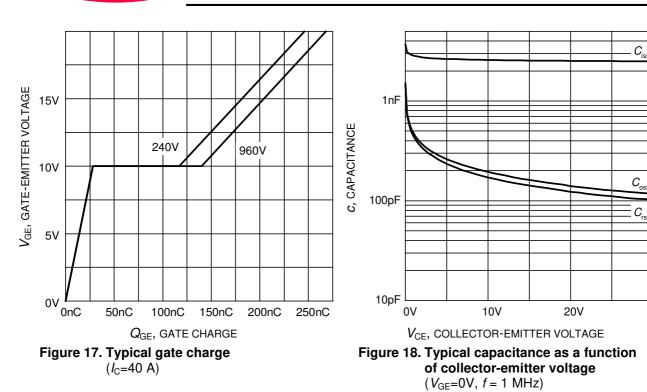

E, SWITCHING ENERGY LOSSES

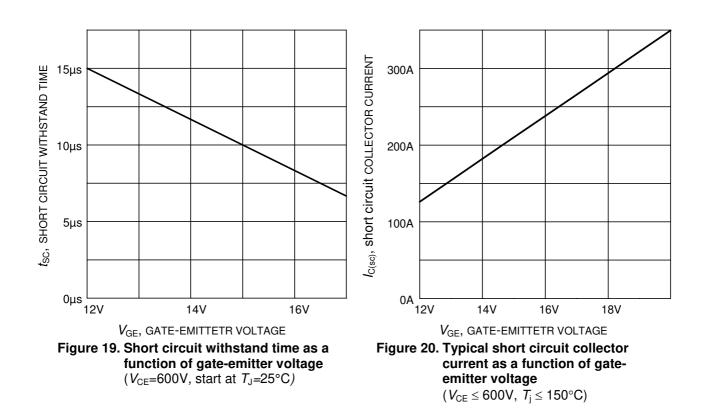
TrenchStop[®] Series


*) E_{on} and E_{t} include losses *) E_{on} and E_{ts} include losses due to diode recovery due to diode recovery 15 mJ 25,0mJ ts SWITCHING ENERGY LOSSES E_{ts} 20,0mJ 10 mJ F 15,0mJ F F 10,0mJ F 5 mJ шî 5,0mJ 0,0mJ

60A 10A 20A 30A 40A 50A 70A I_C , COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, $T_{J}=150^{\circ}C$,

 $V_{\rm CF}$ =600V, $V_{\rm GF}$ =0/15V, $R_{\rm G}$ =15 Ω , Dynamic test circuit in Figure E)




as a function of gate resistor (inductive load, $T_{J}=150^{\circ}C$, $V_{\rm CF}$ =600V, $V_{\rm GF}$ =0/15V, $I_{\rm C}$ =40A, Dynamic test circuit in Figure E)

TrenchStop[®] Series

TrenchStop[®] Series

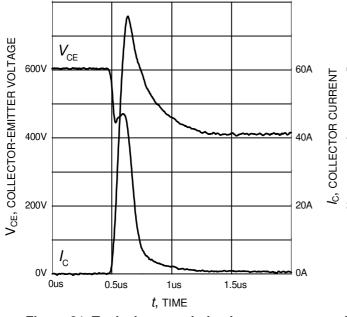


Figure 21. Typical turn on behavior $(V_{GE}=0/15V, R_{G}=15\Omega, T_{j}=150^{\circ}C, Dynamic test circuit in Figure E)$

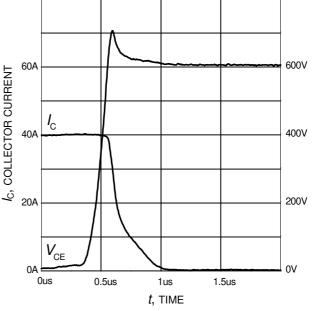
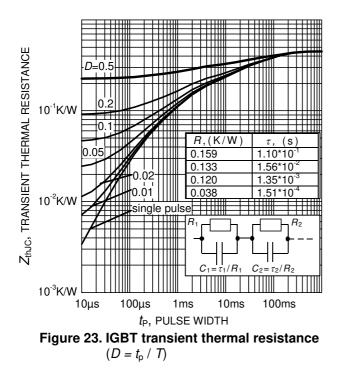
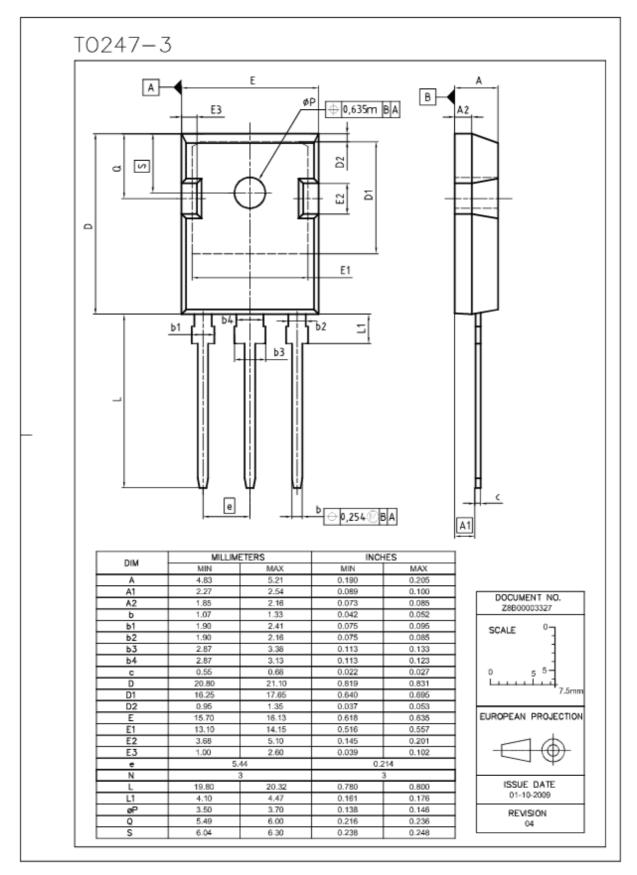




Figure 22. Typical turn off behavior $(V_{GE}=15/0V, R_{G}=15\Omega, T_{j}=150^{\circ}C, Dynamic test circuit in Figure E)$

PG-TO247-3

TrenchStop[®] Series

V_{GE} 90% V_{GE} 10% V_{GE} I_{C} 90% I_C 90% I_c 10% I_c 10% I_C V_{CE} 90% V_{CE} τ₂ r₂ $\frac{\tau_1}{r_1}$ p(t) r₂ rn r1 22 f_{d(off)} f_{d(on)} t_f t_r SIS00053 Figure A. Definition of switching times T_C V_{GE} 90% V_{GE} Figure D. Thermal equivalent circuit 10% V_{GE} I_{C} 1/2·L D.U.T. (Diode) C_{σ} 1% I_C V_{CE} D.U.T. (IGBT) $E_{\text{OFF}} = \int_{t_1} V_{\text{CE}} \times I_{\text{C}} \times dt$ $E_{\rm ON} = \int_{t_3} V_{\rm CE} \times I_{\rm C} \times dt$ 3% V_{CE} 1/2•L ₹₹ t_2 *t*₃ t_4 SIS Figure B. Definition of switching losses

Figure E. Dynamic test circuit Leakage inductance L_{σ} =180nH and Stray capacity C_{σ} =39pF.

Edition 2006-01

Published by Infineon Technologies AG 81726 München, Germany

© Infineon Technologies AG 12/7/11. All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (**www.infineon.com**).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.