: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Reverse Conducting IGBT with monolithic body diode

Features:

- Powerful monolithic Body Diode with very low forward voltage
- Body diode clamps negative voltages
- Trench and Fieldstop technology for 1200 V applications offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
- NPT technology offers easy parallel switching capability due to positive temperature coefficient in $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$
- Low EMI
- Qualified according to JEDEC ${ }^{1}$ for target applications

- Pb-free lead plating; RoHS compliant

- Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/

Applications:

- Inductive Cooking
- Soft Switching Applications

IHW25N120R2
Soft Switching Series

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic $R_{\text {th JC }}$ 0.41 IGBT thermal resistance, junction - case $R_{\text {thJCD }}$ 0.41 Diode thermal resistance, junction - case $R_{\text {th JA }}$ 40 Thermal resistance, junction - ambient				

Electrical Characteristic, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Conditions	Value			Unit
			min.	Typ.	max.	
Static Characteristic						
Collector-emitter breakdown voltage	$V_{\text {(BR)CES }}$	$V_{G E}=0 \mathrm{~V}, I_{\mathrm{C}}=500 \mu \mathrm{~A}$	1200	-	-	V
Collector-emitter saturation voltage	$V_{\text {CE(sat) }}$	$\begin{aligned} & V_{\mathrm{GE}}=15 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A} \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=175^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{gathered} 1.6 \\ 1.95 \\ 2.0 \end{gathered}$	1.8	
Diode forward voltage	V_{F}	$\begin{aligned} & V_{G E}=0 V, I_{F}=25 \mathrm{~A} \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=175^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 1.5 \\ 1.75 \\ 1.8 \end{gathered}$	1.75	
Gate-emitter threshold voltage	$V_{\text {GE(th })}$	$\begin{aligned} & \hline I_{\mathrm{C}}=0.58 \mathrm{~mA}, \\ & V_{\mathrm{CE}}=V_{\mathrm{GE}} \end{aligned}$	5.1	5.8	6.4	
Zero gate voltage collector current	$I_{\text {CES }}$	$\begin{aligned} & V_{\mathrm{CE}}=1200 \mathrm{~V}, \\ & V_{\mathrm{GE}}=0 \mathrm{~V} \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=175^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		-	$\begin{gathered} 4 \\ 2500 \end{gathered}$	$\mu \mathrm{A}$
Gate-emitter leakage current	$I_{\text {GES }}$	$V_{\text {CE }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=20 \mathrm{~V}$	-	-	100	nA
Transconductance	$g_{\text {fs }}$	$V_{C E}=20 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A}$	-	16.3	-	S
Integrated gate resistor	$R_{\text {Gint }}$			none		Ω

Dynamic Characteristic

Input capacitance	$C_{\text {iss }}$	$\begin{aligned} & V_{\mathrm{CE}}=25 \mathrm{~V}, \\ & V_{\mathrm{GE}}=0 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	-	2342	-	pF
Output capacitance	$C_{\text {oss }}$		-	68.7	-	
Reverse transfer capacitance	$C_{\text {rss }}$		-	55.5	-	
Gate charge	$Q_{\text {Gate }}$	$\begin{aligned} & V_{\mathrm{CC}}=960 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A} \\ & V_{G E}=15 \mathrm{~V} \end{aligned}$	-	60.7	-	nC
Internal emitter inductance measured 5 mm (0.197 in.) from case	L_{E}		-	13	-	nH

Switching Characteristic, Inductive Load, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	
IGBT Characteristic						
Turn-off delay time	$t_{\text {d (off) }}$	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C}, \\ & V_{\mathrm{CC}}=600 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A} \\ & V_{\mathrm{GE}}=0 / 15 \mathrm{~V}, \\ & R_{\mathrm{G}}=10 \Omega, \end{aligned}$	-	324	-	ns
Fall time	t_{f}		-	55.8	-	
Turn-on energy	$E_{\text {on }}$		-	-	-	
Turn-off energy	$E_{\text {off }}$		-	1.59	-	
Total switching energy	$E_{\text {ts }}$		-	1.59	-	mJ

Switching Characteristic, Inductive Load, at $T_{\mathrm{j}}=175^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Value			Unit
			min.	Typ.	max.	
IGBT Characteristic						
Turn-off delay time	$t_{\text {d (off) }}$	$\begin{aligned} & T_{\mathrm{j}}=175^{\circ} \mathrm{C} \\ & V_{\mathrm{CC}}=600 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A}, \\ & V_{\mathrm{GE}}=0 / 15 \mathrm{~V}, \\ & R_{\mathrm{G}}=10 \Omega, \end{aligned}$	-	373	-	ns
Fall time	$t_{\text {f }}$		-	90.6	-	
Turn-on energy	$E_{\text {on }}$		-	-	-	
Turn-off energy	$E_{\text {off }}$		-	2.54	-	
Total switching energy	$E_{\text {ts }}$		-	2.54	-	mJ

Figure 1. Collector current as a function of switching frequency for hard switching (turn-off)
($T_{\mathrm{j}} \leq 175^{\circ} \mathrm{C}, D=0.5, V_{\mathrm{CE}}=600 \mathrm{~V}$, $\left.V_{G E}=0 /+15 \mathrm{~V}, R_{\mathrm{G}}=10 \Omega\right)$

T_{C}, CASE TEMPERATURE
Figure 3. Power dissipation as a function of case temperature
($T_{\mathrm{j}} \leq 175^{\circ} \mathrm{C}$)

Figure 2. IGBT Safe operating area
($D=0, T_{\mathrm{C}}=25^{\circ} \mathrm{C}$,
$\left.T_{\mathrm{j}} \leq 175^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}\right)$

T_{C}, CASE TEMPERATURE
Figure 4. DC Collector current as a function of case temperature
$\left(V_{G E} \geq 15 \mathrm{~V}, T_{\mathrm{j}} \leq 175^{\circ} \mathrm{C}\right)$

$V_{\text {CE, }}$, COLLECTOR-Emitter Voltage
Figure 5. Typical output characteristic ($T_{\mathrm{j}}=25^{\circ} \mathrm{C}$)

$V_{\text {CE }}$, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristic
($T_{\mathrm{j}}=175^{\circ} \mathrm{C}$)

Figure 7. Typical transfer characteristic ($\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}$)

T_{J}, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature
($V_{\text {GE }}=15 \mathrm{~V}$)

I_{C}, COLLECTOR CURRENT
Figure 9. Typical switching times as a function of collector current (inductive load, $T_{J}=175^{\circ} \mathrm{C}$, $V_{\mathrm{CE}}=600 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 / 15 \mathrm{~V}, R_{\mathrm{G}}=10 \Omega$, Dynamic test circuit in Figure E)

R_{G}, GATE RESISTOR
Figure 10. Typical switching times as a function of gate resistor
(inductive load, $T_{J}=175^{\circ} \mathrm{C}, V_{\mathrm{CE}}=600 \mathrm{~V}$, $\mathrm{V}_{\mathrm{GE}}=0 / 15 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A}$,
Dynamic test circuit in Figure E)
T_{J}, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a function of junction temperature (inductive load, $V_{\mathrm{CE}}=600 \mathrm{~V}$,
$V_{\mathrm{GE}}=0 / 15 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A}, R_{\mathrm{G}}=10 \Omega$,
Dynamic test circuit in Figure E) Dynamic test circuit in Figure E)

T_{J}, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage as a function of junction temperature ($I_{C}=0.6 \mathrm{~mA}$)

I_{C}, COLLECTOR CURRENT
Figure 13. Typical turn-off energy as a function of collector current (inductive load, $T_{\mathrm{J}}=175^{\circ} \mathrm{C}$, $V_{\mathrm{CE}}=600 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 / 15 \mathrm{~V}, R_{\mathrm{G}}=10 \Omega$, Dynamic test circuit in Figure E)

Figure 14. Typical turn-off energy as a function of gate resistor
(inductive load, $T_{J}=175^{\circ} \mathrm{C}, V_{\mathrm{CE}}=600 \mathrm{~V}$, $V_{G E}=0 / 15 \mathrm{~V}, I_{C}=25 \mathrm{~A}$,
Dynamic test circuit in Figure E)

T_{J}, JUNCTION TEMPERATURE
Figure 15. Typical turn-off energy as a function of junction temperature (inductive load, $V_{\mathrm{CE}}=600 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{GE}}=0 / 15 \mathrm{~V}, I_{\mathrm{C}}=25 \mathrm{~A}, R_{\mathrm{G}}=10 \Omega$,
Dynamic test circuit in Figure E)

$V_{\text {CE }}$, COLLECTOR-EMITTER VOLTAGE
Figure 16. Typical turn-off energy as a function of collector emitter voltage
(inductive load, $T_{J}=175^{\circ} \mathrm{C}$,
$\mathrm{V}_{\mathrm{GE}}=0 / 15 \mathrm{~V}, I_{\mathrm{C}}=20 \mathrm{~A}, R_{\mathrm{G}}=10 \Omega$,
Dynamic test circuit in Figure E)

Figure 17. Typical gate charge
($I_{\mathrm{C}}=25 \mathrm{~A}$)

Figure 19. IGBT transient thermal resistance
($D=t_{\mathrm{p}} / T$)

Figure 18. Typical capacitance as a function of collector-emitter voltage ($V_{G E}=0 \mathrm{~V}, f=1 \mathrm{MHz}$)

t_{P}, PULSE WIDTH
Figure 20. Diode transient thermal impedance as a function of pulse width ($D=t_{\mathrm{p}} / T$)

Soft Switching Series

Figure 21. Typical diode forward current as a function of forward voltage

Figure 22. Typical diode forward voltage as a function of junction temperature

PG-TO247-3
TO247-3

Figure D. Thermal equivalent circuit

Figure B. Definition of switching losses

Figure E. Dynamic test circuit

Soft Switching Series

Edition 2006-01

Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 11/19/09.

All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

