imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IKB06N60T

Low Loss DuoPack : IGBT in TrenchStop[®] and Fieldstop technology with soft, fast recovery anti-parallel EmCon 3 diode

- Very low V_{CE(sat)} 1.5 V (typ.)
- Maximum Junction Temperature 175 °C
- Short circuit withstand time 5µs
- Designed for frequency inverters for washing machines, fans, pumps and vacuum cleaners
- TrenchStop[®] and Fieldstop technology for 600 V applications offers :
 - very tight parameter distribution
 - high ruggedness, temperature stable behavior
 - very high switching speed
- Low EMI
- Qualified according to JEDEC¹ for target applications
- Pb-free lead plating; RoHS compliant
- Complete product spectrum and PSpice Models : <u>http://www.infineon.com/igbt/</u>

Туре	V _{CE}	I _{C;Tc=100°C}	V _{CE(sat), Tj=25°C}	T _{j,max}	Marking	Package
IKB06N60T	600V	6A	1.5V	175°C	K06T60	PG-TO-263-3-2

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CE}	600	V
DC collector current, limited by T_{jmax}	I _C		А
$T_{\rm C} = 25^{\circ}{\rm C}$		12	
$T_{\rm C}$ = 100°C		6	
Pulsed collector current, t_p limited by T_{jmax}	I _{Cpuls}	18	
Turn off safe operating area	-	18	
$V_{CE} \le 600V, \ T_{j} \le 175^{\circ}C$			
Diode forward current, limited by T_{jmax}	I _F		
$T_{\rm C} = 25^{\circ}{\rm C}$		12	
$T_{\rm C}$ = 100°C		6	
Diode pulsed current, t_p limited by T_{jmax}	I _{Fpuls}	18	
Gate-emitter voltage	V _{GE}	±20	V
Short circuit withstand time ²⁾	t _{sc}	5	μs
V_{GE} = 15V, $V_{CC} \le 400$ V, $T_j \le 150^{\circ}$ C			
Power dissipation	P _{tot}	88	W
$T_{\rm C}$ = 25°C			
Operating junction temperature	Tj	-40+175	°C
Storage temperature	T _{stg}	-55+175	
Soldering temperature (reflow soldering, MSL1)		245	

¹ J-STD-020 and JESD-022

²⁾ Allowed number of short circuits:

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				
IGBT thermal resistance, junction – case	R _{thJC}		1.7	K/W
Diode thermal resistance, junction – case	R _{thJCD}		2.6	
Thermal resistance, junction – ambient	R _{thJA}		62	
Thermal resistance, junction – ambient	R _{thJA}	Footprint 6cm ² Cu	65 40	

Electrical Characteristic, at T_j = 25 °C, unless otherwise specified

Desemptor	Symbol	Conditions		Value		l lmit
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
Static Characteristic						
Collector-emitter breakdown voltage	V _{(BR)CES}	V _{GE} =0V, I _C =0.25mA	600	-	-	V
Collector-emitter saturation voltage	V _{CE(sat)}	V _{GE} = 15V, / _C =6A T _j =25°C T _j =175°C		1.5 1.8	2.05	
Diode forward voltage	V _F	V_{GE} =0V, I_{F} =6A				
		<i>T</i> _j =25°C	-	1.6	2.05	
		<i>T</i> _j =175°C	-	1.6	-	
Gate-emitter threshold voltage	V _{GE(th)}	I _C =0.18mA, V _{CE} =V _{GE}	4.1	4.6	5.7	
Zero gate voltage collector current	I _{CES}	V _{CE} =600V, V _{GE} =0V				μA
		<i>T</i> _j =25°C <i>T</i> _j =175°C	-	-	40 700	
Gate-emitter leakage current	I _{GES}	$V_{CE}=0V, V_{GE}=20V$	-	-	100	nA
Transconductance	g fs	V _{CE} =20V, <i>I</i> _C =6A	-	3.6	-	S
Integrated gate resistor	R _{Gint}			none		Ω

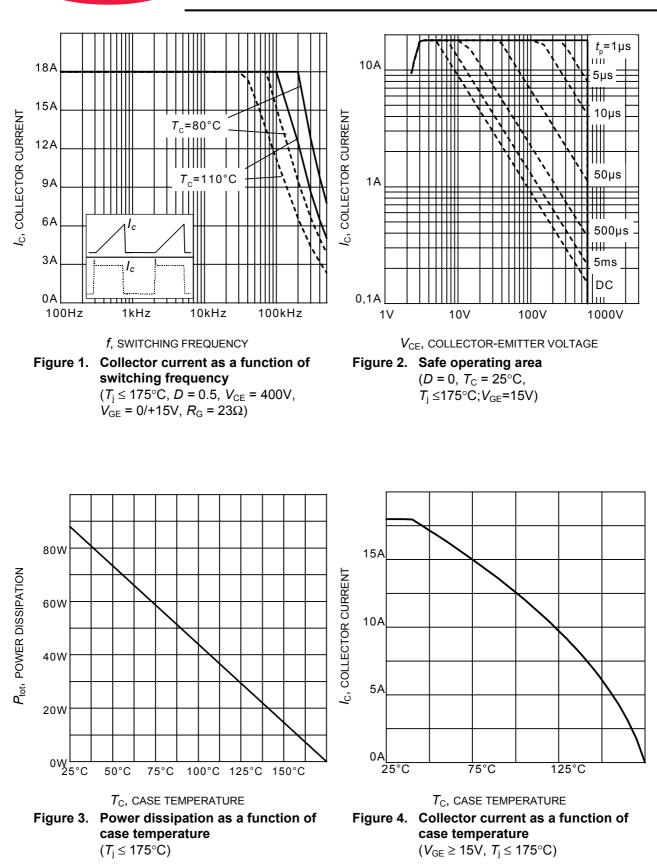
Dynamic Characteristic

Input capacitance	Ciss	V _{CE} =25V,	-	368	-	pF
Output capacitance	Coss	V _{GE} =0V,	-	28	-	
Reverse transfer capacitance	Crss	f=1MHz	-	11	-	
Gate charge	Q _{Gate}	V _{CC} =480V, <i>I</i> _C =6A V _{GE} =15V	-	42	-	nC
Internal emitter inductance measured 5mm (0.197 in.) from case	L _E		-	7	-	nH
Short circuit collector current ¹⁾	I _{C(SC)}	$V_{GE} = 15V, t_{SC} \le 5\mu s$ $V_{CC} = 400V,$ $T_j = 25^{\circ}C$	-	55	-	A

¹⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

Power Semiconductors

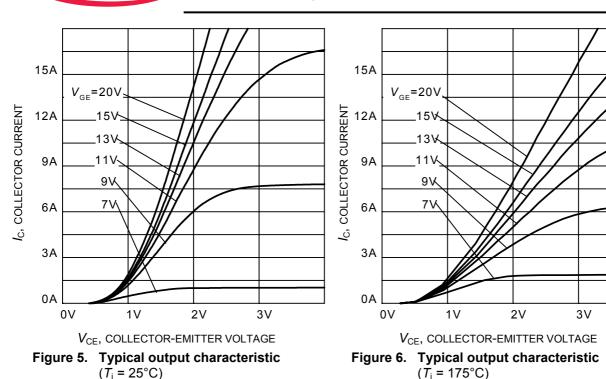
Switching Characteristic, Inductive Load, at Ti=25 °C

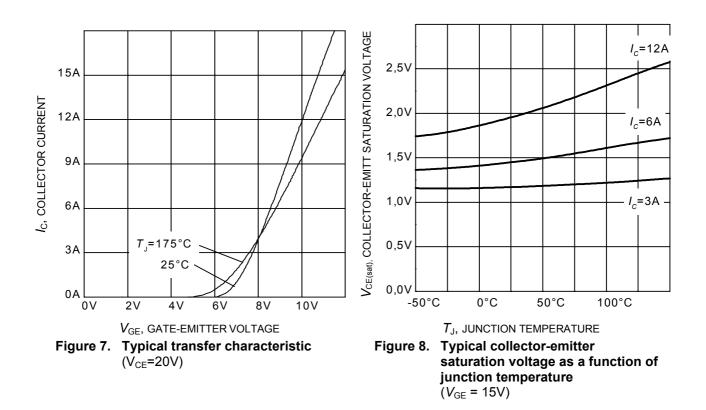

Parameter	Symbol	Conditions	Value			Unit
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
IGBT Characteristic						•
Turn-on delay time	t _{d(on)}	<i>T</i> _j =25°C,	-	9	-	ns
Rise time	t _r	$V_{\rm CC} = 400 \text{V}, I_{\rm C} = 6\text{A},$	-	6	-	 mJ
Turn-off delay time	$t_{d(off)}$	V _{GE} =0/15V, R _G =23Ω,	-	130	-	
Fall time	t _f	$L_{\sigma}^{(2)}$ =60nH,	-	58	-	
Turn-on energy	Eon	C_{σ}^{2} =40pF Energy losses include "tail" and diode	-	0.09	-	
Turn-off energy	E _{off}		-	0.11	-	
Total switching energy	Ets	reverse recovery.	-	0.2	-	
Anti-Parallel Diode Characteristic						•
Diode reverse recovery time	t _{rr}	<i>T</i> _j =25°C,	-	123	-	ns
Diode reverse recovery charge	Q _{rr}	V _R =400V, <i>I</i> _F =6A,	-	190	-	nC
Diode peak reverse recovery current	I _{rrm}	di _F /dt=550A/µs	-	5.3	-	А
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	450	-	A/μs

Switching Characteristic, Inductive Load, at Ti=175 °C

Deremeter	Symbol	Conditions	Value			Unit
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
IGBT Characteristic		· ·				
Turn-on delay time	$t_{d(on)}$	<i>T</i> _j =175°C,	-	9	-	ns
Rise time	t _r	$V_{\rm CC} = 400 V, I_{\rm C} = 6 A,$	-	8	-	 mJ
Turn-off delay time	$t_{d(off)}$	V _{GE} =0/15V, R _G = 23Ω	-	165	-	
Fall time	t _f	$L_{\sigma}^{(1)} = 60 \text{ nH},$	-	84	-	
Turn-on energy	Eon	C_{σ}^{1} =40pF Energy losses include "tail" and diode	-	0.14	-	
Turn-off energy	E _{off}		-	0.18	-	
Total switching energy	Ets	reverse recovery.	-	0.335	-	
Anti-Parallel Diode Characteristic						•
Diode reverse recovery time	t _{rr}	<i>T</i> _j =175°C	-	180	-	ns
Diode reverse recovery charge	Q _{rr}	V _R =400V, <i>I</i> _F =6A,	-	500	-	nC
Diode peak reverse recovery current	I _{rrm}	di _F /dt=550A/µs	-	7.6	-	А
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	285	-	A/μs

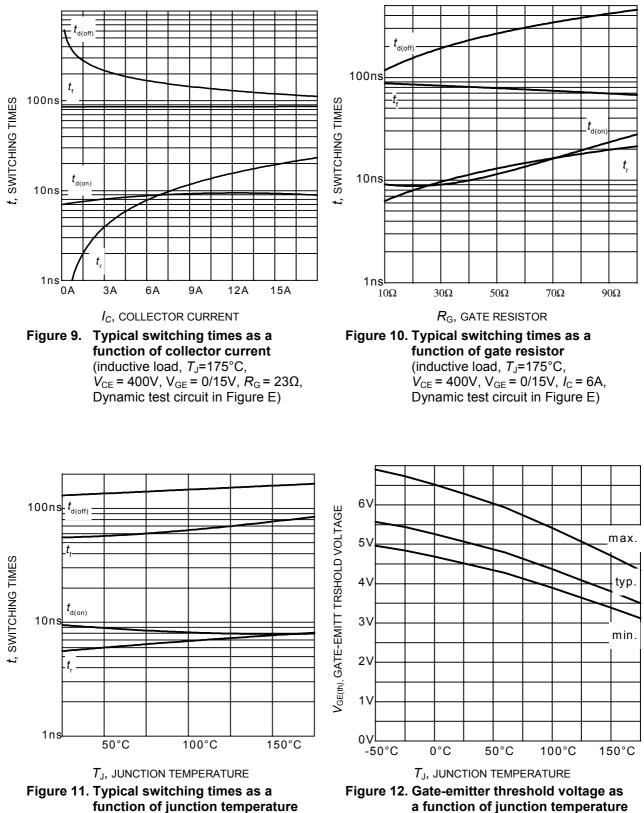
²⁾ Leakage inductance L_{σ} and Stray capacity C_{σ} due to dynamic test circuit in Figure E. ¹⁾ Leakage inductance L_{σ} and Stray capacity C_{σ} due to dynamic test circuit in Figure E.

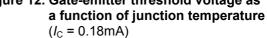




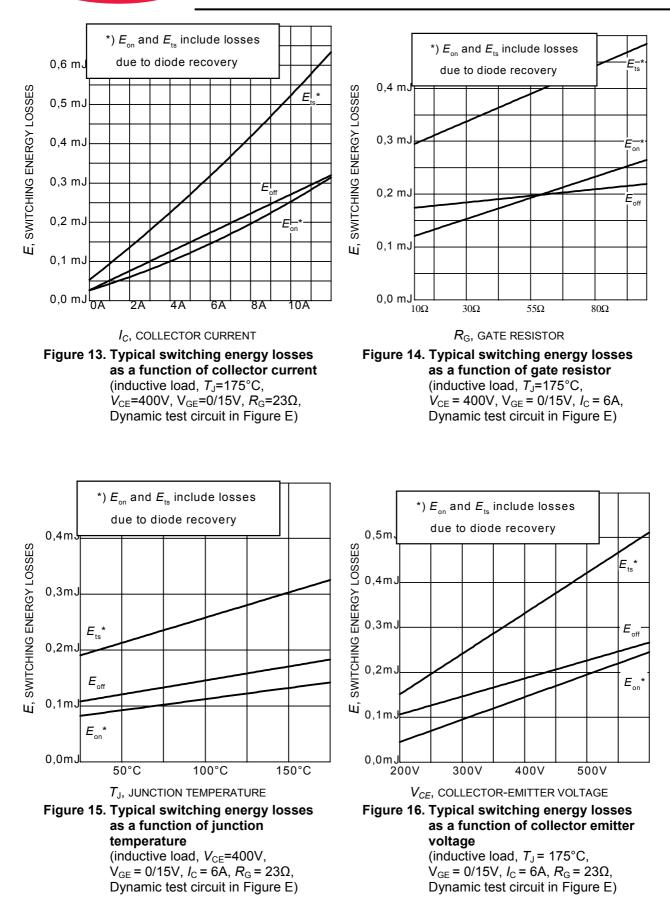
IKB06N60T

TrenchStop[®] series



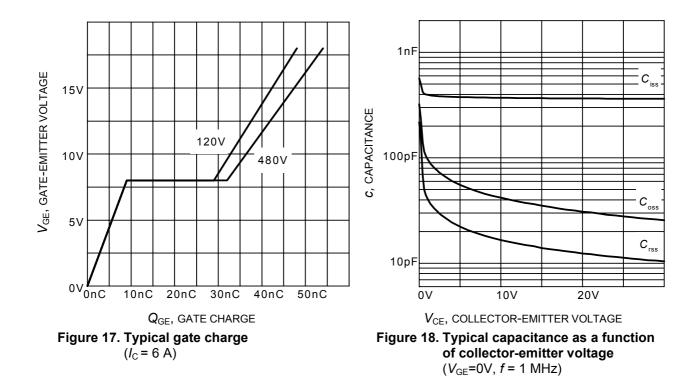


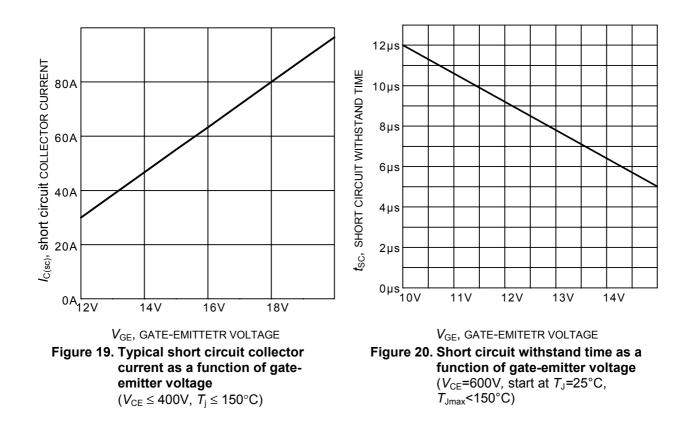
TrenchStop[®] series



(inductive load, V_{CE} = 400V,

 $V_{GE} = 0/15V, I_C = 6A, R_G = 23\Omega,$ Dynamic test circuit in Figure E)


TrenchStop[®] series



IKB06N60T

TrenchStop[®] series

IKB06N60T

τ (s

4.849*10

1.014*10

1.309*10

 $= \tau_2 / R$

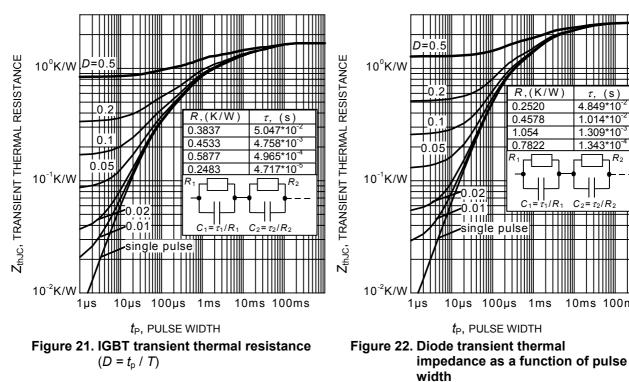
10ms 100ms

.343*10

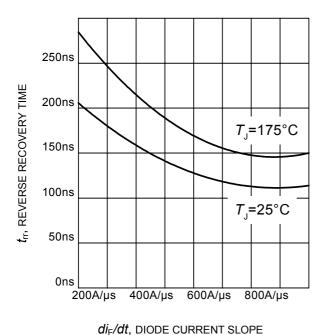
 R_2

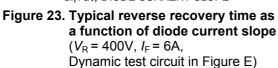
R, (K/W)

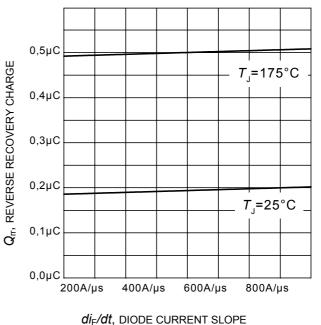
0.2520

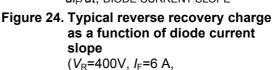

0.4578

1.054

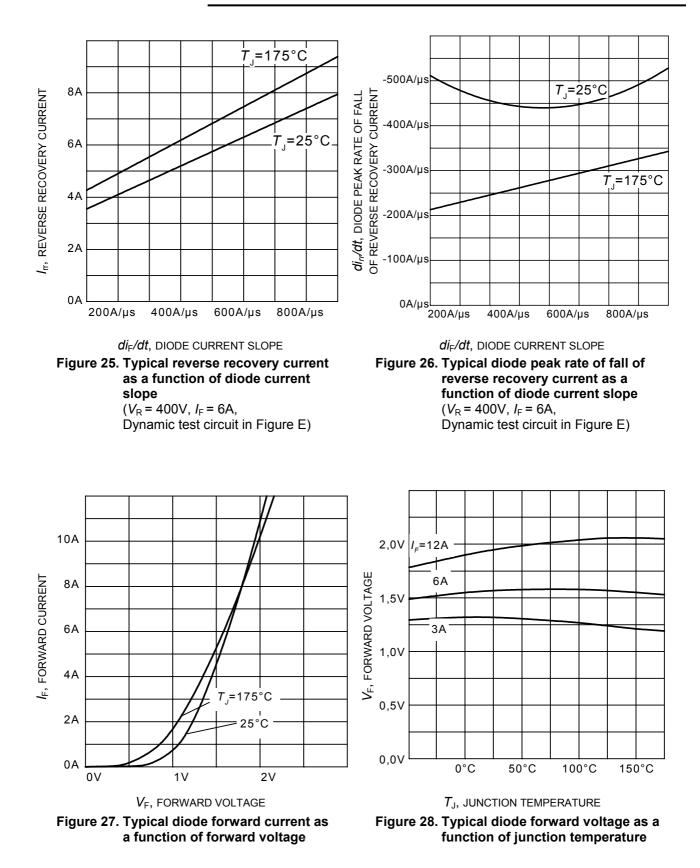

0.7822


С


IR

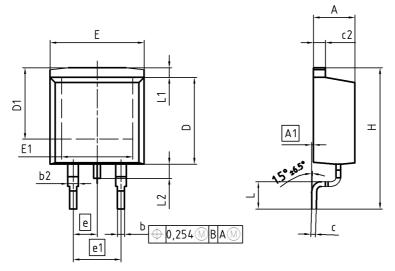


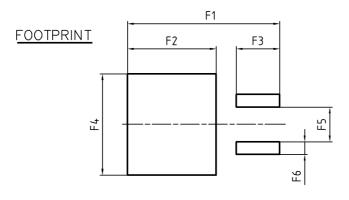
 $(D=t_{\rm P}/T)$

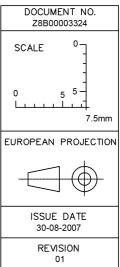


Dynamic test circuit in Figure E)

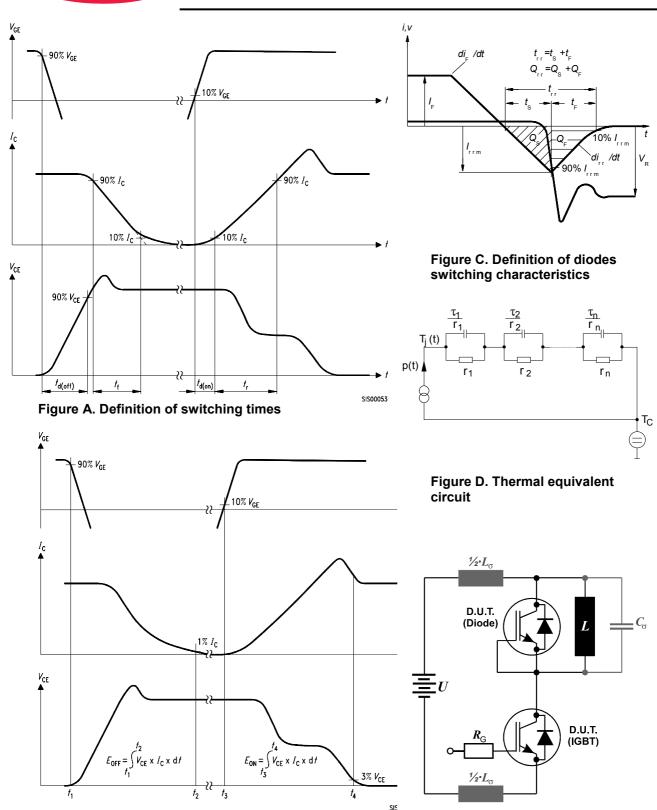
IKB06N60T


TrenchStop[®] series




TrenchStop[®] series

PG-TO-263-3-2



	IES	INCH	TERS	MILLIME	DIM
	MAX	MIN	MAX	MIN	DIM
	0.180	0.169	4.57	4.30	A
	0.010	0.000	0.25	0.00	A1
DOCUM	0.033	0.026	0.85	0.65	b
Z8B00	0.045	0.037	1.15	0.95	b2
	0.026	0.013	0.65	0.33	с
SCALE	0.055	0.046	1.40	1.17	c2
	0.372	0.335	9.45	8.51	D
	0.311	0.280	7.90	7.10	D1
0	0.406	0.386	10.31	9.80	E
	0.339	0.256	8.60	6.50	E1
	00	0.1	4	2.54	
	:00	0.2	8	e1	
EUROPEAN	2	2	<u>)</u>	2	N
	0.625	0.575	15.88	14.61	Н
	0.118	0.090	3.00	2.29	L
	0.063	0.028	1.60	0.70	L1
	0.070	0.039	1.78	1.00	L2
	0.640	0.632	16.25	16.05	F1
ISSUE	0.374	0.366	9.50	9.30	F2
30-08	0.185	0.177	4.70	4.50	F3
	0.429	0.421	10.90	10.70	F4
REVI	0.152	0.144	3.85	3.65	F5
(0.057	0.049	1.45	1.25	F6

TrenchStop[®] series

Figure E. Dynamic test circuit Leakage inductance L_{σ} =60nH and Stray capacity C_{σ} =40pF.

Figure B. Definition of switching losses

Edition 2006-01

Published by Infineon Technologies AG 81726 München, Germany

© Infineon Technologies AG 11/6/07. All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (**www.infineon.com**).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.