: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

HighSpeed 2-Technology with soft, fast recovery anti-parallel EmCon HE diode

- Designed for:
- SMPS
- Lamp Ballast
- ZVS-Converter

- optimised for soft-switching / resonant topologies
- $\quad 2^{\text {nd }}$ generation HighSpeed-Technology
for 1200 V applications offers:
- loss reduction in resonant circuits

- temperature stable behavior
- parallel switching capability
- tight parameter distribution
- $E_{\text {off }}$ optimized for $I_{C}=1 \mathrm{~A}$
- Pb-free lead plating; RoHS compliant
- Qualified according to JEDEC ${ }^{2}$ for target applications
- Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/

Type	$V_{\text {CE }}$	I_{C}	$E_{\text {off }}$	$\boldsymbol{T}_{\mathrm{j}}$	Marking	Package
IKP01N120H2	1200 V	1 A	0.09 mJ	$150^{\circ} \mathrm{C}$	K 01 H 1202	PG-TO-220-3-1

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V_{CE}	1200	V
Triangular collector current	I_{C}		A
$T_{\mathrm{C}}=25^{\circ} \mathrm{C}, f=140 \mathrm{kHz}$		3.2	
$T_{\mathrm{C}}=100^{\circ} \mathrm{C}, f=140 \mathrm{kHz}$		1.3	
Pulsed collector current, t_{p} limited by $T_{\text {jmax }}$	I_{Cpuls}	3.5	
Turn off safe operating area	-	3.5	
$V_{\mathrm{CE}} \leq 1200 \mathrm{~V}, T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$			
Diode forward current	I_{F}	3.2	
$T_{\mathrm{C}}=25^{\circ} \mathrm{C}$		1.3	
$T_{\mathrm{C}}=100^{\circ} \mathrm{C}$	V_{GE}	± 20	V
Gate-emitter voltage	$P_{\text {tot }}$	28	W
Power dissipation	$T_{\mathrm{j}}, T_{\mathrm{stg}}$	$-40 \ldots+150$	${ }^{\circ} \mathrm{C}$
$T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	260	
Operating junction and storage temperature			
Soldering temperature, $1.6 \mathrm{~mm}(0.063$ in.) from case for 10 s			

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic IGBT thermal resistance, junction - caseR_{thJC}				
K/W Diode thermal resistance, Junction - case Thermal resistance, junction - ambientR_{thJCD}		4.5	11	62

Electrical Characteristic, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Conditions	Value			Unit
			min.	Typ.	max.	
Static Characteristic						
Collector-emitter breakdown voltage	$V_{\text {(BR)CES }}$	$V_{G E}=0 \mathrm{~V}, I_{\mathrm{C}}=300 \mu \mathrm{~A}$	1200	-	-	V
Collector-emitter saturation voltage	$V_{\text {CE(sat) }}$	$\begin{aligned} & V_{\mathrm{GE}}=15 \mathrm{~V}, I_{\mathrm{C}}=1 \mathrm{~A} \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & V_{\mathrm{GE}}=10 \mathrm{~V}, I_{\mathrm{C}}=1 \mathrm{~A}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 2.2 \\ & 2.5 \\ & 2.4 \end{aligned}$	2.8	
Gate-emitter threshold voltage	$V_{\text {GE(th) }}$	$I_{C}=30 \mu \mathrm{~A}, V_{\text {CE }}=V_{G E}$	2.1	3	3.9	
Zero gate voltage collector current	$I_{\text {CES }}$	$\begin{aligned} & V_{\mathrm{CE}}=1200 \mathrm{~V}, V_{\mathrm{GE}}=0 \mathrm{~V} \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		-	$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\mu \mathrm{A}$
Diode forward voltage	V_{F}	$\begin{aligned} & V_{\mathrm{GE}}=0, I_{\mathrm{F}}=0.5 \mathrm{~A} \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 2.0 \\ 1.75 \end{gathered}$	2.5	V
Gate-emitter leakage current	$I_{\text {GES }}$	$V_{C E}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=20 \mathrm{~V}$	-	-	40	nA
Transconductance	$g_{\text {fs }}$	$V_{C E}=20 \mathrm{~V}, I_{C}=1 \mathrm{~A}$	-	0.75	-	S

Dynamic Characteristic						
Input capacitance	$C_{\text {iss }}$	$\begin{aligned} & V_{\mathrm{CE}}=25 \mathrm{~V}, \\ & V_{\mathrm{GE}}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	-	91.6	-	pF
Output capacitance	$C_{\text {oss }}$		-	9.8	-	
Reverse transfer capacitance	$C_{\text {rss }}$		-	3.4	-	
Gate charge	$Q_{\text {Gate }}$	$\begin{aligned} & V_{\mathrm{CC}}=960 \mathrm{~V}, I_{\mathrm{C}}=1 \mathrm{~A} \\ & V_{\mathrm{GE}}=15 \mathrm{~V} \end{aligned}$	-	8.6	-	nC
Internal emitter inductance measured 5 mm (0.197 in .) from case	L_{E}		-	7	-	nH

Switching Characteristic, Inductive Load, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Value			Unit
			min.	Typ.	max.	
IGBT Characteristic						
Turn-on delay time	$t_{\text {d }(\text { on) }}$	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C}, \\ & V_{\mathrm{CC}}=800 \mathrm{~V}, \\ & I_{\mathrm{C}}=1 \mathrm{~A}, \\ & V_{\mathrm{GE}}=15 \mathrm{~V} / 0 \mathrm{~V}, \\ & R_{\mathrm{G}}=241 \Omega, \\ & \left.\mathrm{~L}^{2}=2\right)=180 \mathrm{nH}, \\ & \mathrm{C}_{\sigma}{ }^{2)}=40 \mathrm{pF} \end{aligned}$ Energy losses include "tail" and diode ${ }^{3)}$ reverse recovery.	-	13	-	ns
Rise time	t_{r}		-	6.3	-	
Turn-off delay time	$t_{\text {d (off) }}$		-	370	-	
Fall time	$t_{\text {f }}$		-	28	-	
Turn-on energy	$E_{\text {on }}$		-	0.08	-	mJ
Turn-off energy	$E_{\text {off }}$		-	0.06	-	
Total switching energy	$E_{\text {ts }}$		-	0.14	-	

Anti-Parallel Diode Characteristic

Diode reverse recovery time	$t_{\text {rr }}$	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C}, \\ & V_{\mathrm{R}}=800 \mathrm{~V}, I_{\mathrm{F}}=1 \mathrm{~A}, \\ & R_{\mathrm{G}}=241 \Omega \end{aligned}$	-	83	-	ns
Diode reverse recovery charge	$Q_{\text {rr }}$		-	89	-	$\mu \mathrm{C}$
Diode peak reverse recovery current	$I_{\text {rrm }}$		-	2.5	-	A
Diode current slope	$d i_{\text {F }} / d t$		-	289	-	A/ $\mu \mathrm{S}$
Diode peak rate of fall of reverse recovery current during t_{b}	$d i_{\mathrm{rr}} / d t$		-	178	-	

Switching Characteristic, Inductive Load, at $T_{\mathrm{j}}=150^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Value			Unit
			min.	Typ.	max.	

IGBT Characteristic

Turn-on delay time	$t_{\text {d }(\text { on) }}$	$\begin{aligned} & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & V_{\mathrm{CC}}=800 \mathrm{~V}, \\ & I_{\mathrm{C}}=1 \mathrm{~A}, \\ & V_{\mathrm{GE}}=15 \mathrm{~V} / 0 \mathrm{~V}, \\ & R_{\mathrm{G}}=241 \Omega, \\ & \mathrm{~L}^{2}=180 \mathrm{nH}, \\ & \mathrm{C}_{\sigma}{ }^{2)}=40 \mathrm{pF} \end{aligned}$ Energy losses include "tail" and diode ${ }^{3)}$ reverse recovery.	-	12	-	ns
Rise time	t_{r}		-	8.9	-	
Turn-off delay time	$t_{\text {d (off) }}$		-	450	-	
Fall time	t_{f}		-	43	-	
Turn-on energy	$E_{\text {on }}$		-	0.11	-	mJ
Turn-off energy	$E_{\text {off }}$		-	0.09	-	
Total switching energy	$E_{\text {ts }}$		-	0.2	-	

Anti-Parallel Diode Characteristic

Diode reverse recovery time	$t_{\text {rr }}$	$\begin{aligned} & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & V_{\mathrm{R}}=800 \mathrm{~V}, I_{\mathrm{F}}=1 \mathrm{~A}, \\ & R_{\mathrm{G}}=241 \Omega \end{aligned}$	-	213	-	ns
Diode reverse recovery charge	$Q_{\text {rr }}$		-	180	-	$\mu \mathrm{C}$
Diode peak reverse recovery current	$I_{\text {rrm }}$		-	2.7	-	A
Diode current slope	$d i_{\mathrm{F}} / d t$		-	240	-	A/ $\mu \mathrm{s}$
Diode peak rate of fall of reverse recovery current during t_{b}	$d i_{\text {rr }} / d t$		-	135	-	

[^0]Switching Energy ZVT, Inductive Load

Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	
IGBT Characteristic						
Turn-off energy	$E_{\text {off }}$	$\begin{aligned} & V_{\mathrm{CC}}=800 \mathrm{~V}, \\ & I_{\mathrm{C}}=1 \mathrm{~A}, \\ & V_{\mathrm{GE}}=15 \mathrm{~V} / 0 \mathrm{~V}, \\ & R_{\mathrm{G}}=241 \Omega \\ & \mathrm{C}_{\mathrm{r}}^{2)}=1 \mathrm{nF} \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{gathered} 0.02 \\ 0.044 \end{gathered}$	-	mJ

f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of switching frequency
($T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}, D=0.5, V_{\mathrm{CE}}=800 \mathrm{~V}$, $\left.V_{\mathrm{GE}}=+15 \mathrm{~V} / 0 \mathrm{~V}, R_{\mathrm{G}}=241 \Omega\right)$

T_{C}, CASE TEMPERATURE
Figure 3. Power dissipation as a function of case temperature
($T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$)

$V_{\text {CE }}$, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
($D=0, T_{\mathrm{C}}=25^{\circ} \mathrm{C}, T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$)

T_{C}, CASE TEMPERATURE

Figure 4. Collector current as a function of case temperature
$\left(V_{G E} \leq 15 \mathrm{~V}, T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}\right)$

$V_{\text {CE }}$, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics ($T_{\mathrm{j}}=25^{\circ} \mathrm{C}$)

$V_{\text {GE }}$, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics ($V_{C E}=20 \mathrm{~V}$)

$V_{\text {CE }}$, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics ($T_{\mathrm{j}}=150^{\circ} \mathrm{C}$)

Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature
$\left(V_{G E}=15 \mathrm{~V}\right)$

I_{C}, COLLECTOR CURRENT
Figure 9. Typical switching times as a function of collector current
(inductive load, $T_{\mathrm{j}}=150^{\circ} \mathrm{C}$,
$V_{\mathrm{CE}}=800 \mathrm{~V}, V_{\mathrm{GE}}=+15 \mathrm{~V} / 0 \mathrm{~V}, R_{\mathrm{G}}=241 \Omega$, dynamic test circuit in Fig.E)

Figure 11. Typical switching times as a function of junction temperature (inductive load, $V_{C E}=800 \mathrm{~V}$, $V_{\mathrm{GE}}=+15 \mathrm{~V} / 0 \mathrm{~V}, I_{\mathrm{C}}=1 \mathrm{~A}, R_{\mathrm{G}}=241 \Omega$, dynamic test circuit in Fig.E)

R_{G}, GATE RESISTOR
Figure 10. Typical switching times as a function of gate resistor
(inductive load, $T_{j}=150^{\circ} \mathrm{C}$,
$V_{\mathrm{CE}}=800 \mathrm{~V}, V_{G E}=+15 \mathrm{~V} / 0 \mathrm{~V}, I_{\mathrm{C}}=1 \mathrm{~A}$, dynamic test circuit in Fig.E)

T_{j}, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage as a function of junction temperature ($I_{C}=0.03 \mathrm{~mA}$)

I_{C}, COLLECTOR CURRENT
Figure 13. Typical switching energy losses as a function of collector current
(inductive load, $T_{\mathrm{j}}=150^{\circ} \mathrm{C}$,
$V_{\mathrm{CE}}=800 \mathrm{~V}, V_{\mathrm{GE}}=+15 \mathrm{~V} / 0 \mathrm{~V}, R_{\mathrm{G}}=241 \Omega$, dynamic test circuit in Fig.E)

E, SWITCHING ENERGY LOSSES

T_{j}, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, $V_{C E}=800 \mathrm{~V}$, $V_{\mathrm{GE}}=+15 \mathrm{~V} / 0 \mathrm{~V}, I_{\mathrm{C}}=1 \mathrm{~A}, R_{\mathrm{G}}=241 \Omega$, dynamic test circuit in Fig.E)

R_{G}, GATE RESISTOR
Figure 14. Typical switching energy losses as a function of gate resistor
(inductive load, $T_{\mathrm{j}}=150^{\circ} \mathrm{C}$,
$V_{C E}=800 \mathrm{~V}, V_{G E}=+15 \mathrm{~V} / 0 \mathrm{~V}, I_{C}=1 \mathrm{~A}$, dynamic test circuit in Fig.E)

Figure 16. Typical turn off switching energy loss for soft switching
(dynamic test circuit in Fig. E)

Figure 17. IGBT transient thermal impedance as a function of pulse width ($D=t_{\mathrm{p}} / T$)

$V_{\text {CE }}$, Collector-emitter voltage
Figure 19. Typical capacitance as a function of collector-emitter voltage $\left(V_{\mathrm{GE}}=0 \mathrm{~V}, f=1 \mathrm{MHz}\right)$

Q_{GE}, GATE CHARGE
Figure 18. Typical gate charge
($I_{C}=1 \mathrm{~A}$)

t_{p}, PULSE WIDTH
Figure 20. Typical turn off behavior, hard switching
$\left(V_{G E}=15 / 0 \mathrm{~V}, R_{G}=220 \Omega, T_{j}=150^{\circ} \mathrm{C}\right.$, Dynamic test circuit in Figure E)

Figure 21. Typical turn off behavior, soft switching
$\left(V_{G E}=15 / 0 \mathrm{~V}, R_{\mathrm{G}}=220 \Omega, T_{\mathrm{j}}=150^{\circ} \mathrm{C}\right.$,
Dynamic test circuit in Figure E)

R_{G}, GATE RESISTANCE
Figure 23. Typical reverse recovery time as a function of diode current slope $V_{\mathrm{R}}=800 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=3 \mathrm{~A}$,
Dynamic test circuit in Figure E)

t_{P}, PULSE WIDTH
Figure 22. Diode transient thermal impedance as a function of pulse width ($D=t_{\mathrm{p}} / T$)
R_{G}, GATE RESISTANCE
Figure 24. Typical reverse recovery charge as a function of diode current slope
($V_{\mathrm{R}}=800 \mathrm{~V}, I_{\mathrm{F}}=3 \mathrm{~A}$,
Dynamic test circuit in Figure E)

R_{G}, GATE RESISTANCE
Figure 25. Typical reverse recovery current as a function of diode current slope
$\left(V_{R}=800 \mathrm{~V}, l_{\mathrm{F}}=3 \mathrm{~A}\right.$,
Dynamic test circuit in Figure E)

V_{F}, FORWARD VOLTAGE
Figure 27. Typical diode forward current as a function of forward voltage

R_{G}, GATE RESISTANCE
Figure 26. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope ($V_{R}=800 \mathrm{~V}, I_{F}=3 \mathrm{~A}$,
Dynamic test circuit in Figure E)

T_{J}, JUNCTION TEMPERATURE
Figure 28. Typical diode forward voltage as a function of junction temperature

PG-TO220-3-1

DIM	HILWETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.30	4.87	0.169	0.180
A1	1.17	1.40	0.048	0.065
鱼	215	272	0.085	0.107
b	0.85	0.80	0.098	0.034
b1	0.85	1.40	0.087	0.05\%
b2	0.85	1.15	0.037	0.045
b3	0.85	1.15	0.028	0.046
c	0.38	0.00	0.013	0.024
0	14.81	15.95	0.583	D.828
D1	8.61	9.45	0.386	0.372
D2	12.19	13.10	0.480	0.510
E	9.70	10.38	0.382	0.409
E1	6.60	8.60	0.25\%	D.339
-	2.54		0.100	
E1	5.08		0.200	
N	3		3	
H1	5.90	6.90	0.238	0.272
L	13.00	14.00	0.512	0.551
L1	-	4.80	-	0.109
P	3.60	3.88	0.142	0.150
Q	280	3.00	0.102	D.118

DOCUMENT NO. Z8E00003318
EUROPEAN PROECTION
ISSUE DATE 23-08-2007
$\begin{aligned} & \text { REYSION } \\ & 05 \end{aligned}$

Figure A. Definition of switching times

Figure B. Definition of switching losses

Figure C. Definition of diodes switching characteristics

Figure D. Thermal equivalent circuit

Figure E. Dynamic test circuit Leakage inductance $L_{\sigma}=180 \mathrm{nH}$, Stray capacitor $\mathrm{C}_{\sigma}=40 \mathrm{pF}$, Relief capacitor $\mathrm{C}_{\mathrm{r}}=1 \mathrm{nF}$ (only for ZVT switching)

Edition 2006-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 9/13/07.
All Rights Reserved.

Attention please!
The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: ${ }^{2}$) Leakage inductance L_{σ} and stray capacity C_{σ} due to dynamic test circuit in figure E
 ${ }^{3)}$ Commutation diode from device IKP01N120H2

