mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1200mA step down - LED controller IC ILD4120

Small Signal Discretes

Never stop thinking

Edition 2009-07-06

Published by Infineon Technologies AG, 81726 München, Germany © Infineon Technologies AG 2009. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

ILD4120, 1200mA step down - LED controller IC

Revision History: 2009-07-06, Rev. 1.0

Page	Subjects (major changes since last revision)
	l

Bipolar Buck- converter LED Controller IC

1 Bipolar Buck- converter LED Controller IC

Features

- Wide Input Voltage Range: 4.5 V ... 40 V
- Internal Power Switch
- Over voltage protection
- Over current protection
- Temperature shut down mechanism
- Inherent Open- Circuit LED protection
- Soft- Start capability
- Low shut down current < 200 nA in operating voltage range
- Maximum operating average LED output current: 1200 mA
- Multifunctional Enable Pin
- Analog and PWM dimming possible
- PWM control for LED brightness possible
- Typical 3% output current accuracy
- Minimum external component required
- · Package: DSO-8 with exposed pad

Applications

- LED Controller for industrial applications
- Universal Constant Current Source
- · Generell Illumination e.g. Halogen Replacement
- Residential Architectural and Industrial Commercial Lighting for in- and outdoor
- Signal and Marker Lights for Orientation or Navigation (e.g. steps, exit ways, etc.)

2 Description

The ILD4120 is a hysteretic buck LED controller IC for industrial applications realized in a bipolar IC technology. The LED Controller is capable to drive high current, high brightness LEDs up to 1200 mA.

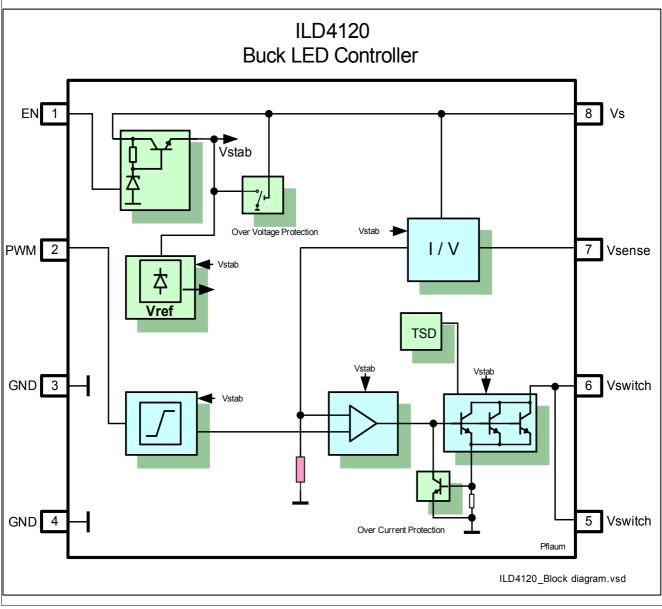
The IC incorporates a wide input voltage range, an internal power switch and the output current level can be adjusted with an external sense resistor.

According to the multifunctional control pin the IC can be switched on and off by an external signal, which is also suitable to regulate brightness of the LEDs by PWM or analog dimming.

Depending on the value of the switching inductor the switching frequency and the voltage ripple could be set.

The precise internal bandgap stabilizes the circuit and provides stable current conditions over temperature range.

Furthermore, over voltage protection and temperature shut down mechanism enforce the IC to protect attached LEDs.


Additional features are included to protect the LED's from overload, short circuit events as well as from over voltage. The LED's can be also protected against thermal overload by thermally coupling the LED's to the ILD4120.

ILD4120 1200mA step down - LED controller IC

Description

Pin Definition

Pin number	Pin Symbol	Function				
1	EN	Enable Voltage				
2	PWM	Multifunctional Pin; Analog and digital (PWM input) dimming				
3	GND	IC ground				
4	GND	IC ground				
5	V _{switch}	Power Switch Output				
6	V _{switch}	Power Switch Output				
7	Isense	LED current sense pin				
8	Vs	Supply Voltage				

Description

Maximum Ratings

Table 2 Maximum ratings

Parameter	Symbol	Limit Value	Unit
Supply voltage	Vs	45	V
Average Output current	<i>l</i> out	1500	mA
Total Power Dissipation; T _s = xx°C	P _{tot}	tbf	mW
Junction temperature	T _J	150	°C
Storage temperature range	T _{STG}	-65 150	°C
ESD capability Human Body Model ¹⁾	V _{ESD_HBM}	2000	V
ESD capability Machine Model ²⁾	V _{ESD_MM}	400	V

1) For ESD testing, the chip was mounted in a DSO-8 package on an application board, where GND is electrically connected to the chip GND

2) For ESD testing, the chip was mounted in a DSO-8 package, where GND is electrically connected to the chip GND

Thermal resistance

Table 3Thermal resistance

Parameter	Symbol	Value	Unit
Junction - solder point	R _{thJS}	tbf	K/W

Electrical Characteristics

3 Electrical Characteristics

3.1 DC Characteristics

4.5 V < $V_{\rm S}$ < 40 V; - 40 °C < $T_{\rm J}$ < 150 °C, all voltages with respect to ground; positive; current flowing into pin; unless otherwise specified

All parameters have been measured at 25 °C, unless otherwise specified

Parameter	Symbol		Values Unit Note / Test Condition			
		Min.	Тур.	Max.		
Overall current consumption	Is _{short}	tbf	tbf		mA	LEDs short; V_s = 4.5 V
						I _{LED} = 350 mA
Overall current consumption	<i>Is</i> _{short}	tbf	tbf		mA	LEDs short; V_s = 40 V I_{LED} = 350 mA
Overall current consumption	Is _{short}			tbf	μA	LEDs short; V_s = 45 V I_{LED} = 350 mA
Overall current consumption open load	Is _{open load}		tbf		μA	$V_{\rm s}$ = 4.5 V $I_{\rm LED}$ = 0 mA
Overall current consumption open load	Is _{open load}		tbf		μA	$V_{\rm s}$ = 40 V $I_{\rm LED}$ = 0 mA
Overall current consumption open load	Is _{open load}		tbf		μA	$V_{\rm s}$ = 45 V $I_{\rm LED}$ = 0 mA
Overall standby current consumption	Is _{standby}			200	nA	EN = 0 V; V _s = 4.5 V
Overall standby current consumption	Is _{standby}			200	nA	EN = 0 V; V _s = 40 V
Input Current of multifunctional control pin	I _{EN}	20	40	70	μA	At any condition
Current of Sense input	I _{sense}			200	nA	At any LED current
Voltage of Sense input	V_{sense}		100		mV	I _{LED} = 1200 mA
Sense threshold hysteresis	$V_{\rm sensehys}$		+/- 15		%	At any LED current
Over voltage Protection	V _{s, OV}	42			V	I _{out} -> 0 A
Residual voltage at collector of power transistor	V _{CE}		1		V	<i>I</i> _{out} > 200 mA
Temperature shut down	Th _{TSD}	115	125	135	°C	$I_{\text{out}} \rightarrow 0 \text{ A}$; refer to T _J

Table 4DC Characteristics

Electrical Characteristics

3.2 AC Characteristics

All parameters have been measured at 25 $^\circ\text{C},$ unless otherwise specified

Table 5AC Characteristics

Parameter	Symbol		Value	Unit	Note /	
		Min.	Тур.	Max.		Test Condition
Switching frequency	F _{sw}		200		kHz	$V_{s} = 12 V$ 3 LEDs in series Rsense = 100 mΩ L = 100 μ H $V_{EN} = 3 V$ $I_{out} = 1200$ mA
Maximum switching frequency	F_{swmax}		500		kHz	Recommended

Electrical Characteristics

3.3 Digital Signals

All parameters have been measured at 25 °C, unless otherwise specified

Table 6 Digital Control Parameter (EN)

Parameter	Symbol		Value	Unit	Note /	
		Min.	Тур.	Max.		Test Condition
Multifunctional control pin voltage range	U_{Pon}	-0.3		40	V	
Control voltage for power on	U_{On}	2	2.2	40	V	Full LED current
Control voltage for power off	$U_{\rm Off}$	-0.3		0.6	V	
Control voltage for analog dimming	$U_{\rm dim}$	1		2	V	Linear dimming
PWM signal frequency	f _{pwm}			1000	Hz	<i>t</i> _{dutycycle} = 1%; signal level reaches 100% in on and off mode
PWM Duty cycle	t _{dutyPWM}	5			%	f = 5 KHz; signal level reaches 100% in on and off mode
PWM voltage	U_{PWM}			40	V	

3.4 Transient Parameters

4.5 V < $V_{\rm S}$ < 40 V; - 40 °C < $T_{\rm J}$ < 150 °C, all voltages with respect to ground; positive; current flowing into pin; unless otherwise specified

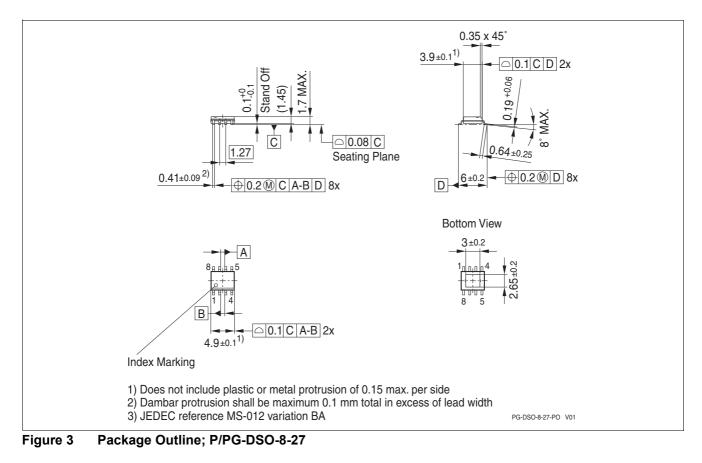
All parameters have been measured at 25 °C, unless otherwise specified

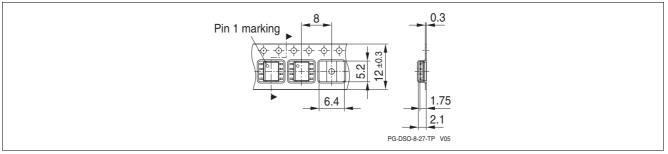
Table 7Digital Control Parameter (EN)

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Response Time	T _{ON}		10		μs	EN: 0 -> 5 V @ t _{rise} < 20ns I _{out} = 1200mA
	T_{OFF}		10		μs	EN: 5 V -> 0 @ t _{fall} < 20 ns I _{out} = 1200mA

Application Circuit

4 Application Circuit




Figure 2 ILD4035; Application Circuit

Package Information

5 Package Information

