Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # LED Driver ICs for High Power LEDs ILD6070 60 V / 0.7 A High Efficiency Step-Down LED Driver IC # **Data Sheet** Revision 3.2, 2014-07-09 Power Management and Multimarket Edition 2014-07-09 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved. #### **Legal Disclaimer** The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. #### Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). #### Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. | Revision History | у | | | | | | | | |------------------|---|--|--|--|--|--|--|--| | Page or Item | Subjects (major changes since previous revision) | | | | | | | | | Revision 3.2, 20 | Revision 3.2, 2014-07-09 | | | | | | | | | Table 2 | Footnote 1 updated respective ESD protection on pin VS | | | | | | | | | Revision 3.1, 20 | 14-06-05 | | | | | | | | | Table 4 | Typical value of $V_{\rm S,UV,off}$ centered Over-temperature protection $T_{\rm OTP,off}$ added Footnote 4 updated | | | | | | | | | Figure 3 | Explanation of over-temperature protection added | | | | | | | | | Revision 3.0, 20 | 13-12-19 | | | | | | | | | All | Initial release of final data sheet | | | | | | | | | Table 1 | Pin 1 function changed to bias control input voltage | | | | | | | | | Table 2 | Upper spec limit of bias control voltage changed to V_{S} | | | | | | | | | Table 4 | Operating conditions for bias control voltage $V_{\rm B}$ added Typical value of $V_{\rm S,\ UV,\ on}$ updated Supply current consumption specified for different supply voltages Typical value of $t_{\rm S,\ reset}$ updated Typical value of $I_{\rm out,\ OCP}$ updated Typical value of $t_{\rm delay,\ OCP}$ updated Typical value of $t_{\rm timeout,\ OCP}$ updated Typical value of $I_{\rm Tadj,\ short}$ updated | | | | | | | | | Table 5 | Typical value of $V_{\rm sensehys}$ updated $R_{\rm ON,~25^{\circ}C}$ updated $R_{\rm ON,~125^{\circ}C}$ updated | | | | | | | | | Table 6 | Typical value of $t_{d, PWM, off}$ updated | | | | | | | | | Table 7 | Typical value of $V_{\rm PWM,~0\%}$ update Typical value of $V_{\rm PWM,~50\%}$ updated Typical value of D.C./ $V_{\rm PWM}$ updated | | | | | | | | | Figure 5 | Figure updated | | | | | | | | #### **Trademarks of Infineon Technologies AG** AURIXTM, C166TM, Canpaktm, CIPOSTM, CIPURSETM, Econopacktm, CoolMostm, CoolSettm, Corecontroltm, Crossavetm, Davetm, DI-Poltm, EasyPIMTM, Econobridgetm, Econopualtm, Econopimtm, Econopacktm, Eicedrivertm, eupectm, FCostm, Hitfettm, Hybridpacktm, I²rftm, Isofacetm, Isopacktm, MIPaqtm, Modstacktm, my-dtm, NovalithICtm, OptiMostm, Origatm, Powercodetm; Primariontm, Primepacktm, Primestacktm, Pro-Siltm, Profettm, Rasictm, Reversavetm, Satrictm, Siegettm, Sindriontm, Sipmostm, Smartlewistm, Solid Flashtm, Tempfettm, thinq!tm, Trenchstoptm, TriCoretm. #### **Other Trademarks** Advance Design System $^{\text{TM}}$ (ADS) of Agilent Technologies, AMBA $^{\text{TM}}$, ARM $^{\text{TM}}$, MULTI-ICE, KEIL, KEIL, PRIMECELL, REALVIEW, THUMB, μ Vision of ARM Limited, UK. AUTOSAR is licensed by AUTOSAR development partnership. Bluetooth of Bluetooth SIG Inc. CAT-iq of DECT Forum. COLOSSUS, FirstGPS of Trimble Navigation Ltd. EMV of EMVCo, LLC (Visa Holdings Inc.). EPCOS of Epcos AG. FLEXGO of Microsoft Corporation. FlexRay is licensed by FlexRay Consortium. HYPERTERMINAL of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 Data Sheet 4 Revision 3.2, 2014-07-09 ### **Table of Contents** # **Table of Contents** | | Table of Contents | 5 | |--------------------------|--|----------------------| | | List of Figures | 6 | | | List of Tables | 7 | | 1 | Features | 8 | | 2 | Product Brief | 9 | | 3 | Maximum Ratings | . 11 | | 4 | Thermal Characteristics | . 12 | | 5 5.1 5.2 5.3 5.4 | Electrical Characteristics DC Characteristics Switching Characteristics Digital Control Signals Switching Parameters | . 13
. 15
. 16 | | 6
6.1
6.2 | Application Circuit Setting the average LED current Inductor Selection Guideline | . 21 | | 7 | Package Information | . 23 | ## ILD6070 60 V / 0.7 A High Efficiency Step-Down LED Driver IC **List of Figures** # **List of Figures** | igure 1 | Block Diagram | 9 | |----------|---|----| | igure 2 | Total Power Dissipation | 12 | | igure 3 | Typical Output Current Duty Cycle of Over-Temperature Protection vs. T _J and R _{Tadj} | 14 | | igure 4 | PWM Input | 16 | | igure 5 | Typical Integrated PWM Duty Cycle vs. PWM Control Voltage | 17 | | igure 6 | Application Circuit | 21 | | igure 7 | Minimum Inductance for 0.35 A Average LED Current | 22 | | igure 8 | Minimum Inductance for 0.7 A Average LED Current | 22 | | igure 9 | Package outline PG-DSO-8-27 (dimensions in mm) | 23 | | igure 10 | Recommended PCB Footprint for Reflow Soldering (dimensions in mm) | 23 | | igure 11 | Tape Loading (dimensions in mm) | 23 | | | | | ## ILD6070 60 V / 0.7 A High Efficiency Step-Down LED Driver IC **List of Tables** # **List of Tables** | Table 1 | Pin Definition and Function | 10 | |---------|--------------------------------------|----| | Table 2 | Maximum Ratings | 11 | | Table 3 | Maximum Thermal Resistance | 12 | | | DC Characteristics | 13 | | | Switching Characteristics | 15 | | | Digital Control Parameter at Pin PWM | 16 | | Table 7 | Analog Control Parameter at Pin PWM | 17 | ## 60 V / 0.7 A High Efficiency Step-Down LED Driver IC ### 1 Features - Wide input voltage range from 4.5 V to 60 V - Capable to provide up to 0.7 A average output current - Up to 1 MHz switching frequency - Soft-start capability - Analog and PWM dimming possible - Integrated PWM generator for analog dimming input - Typical 3% output current accuracy - Very low LED current drift over temperature - Adjustable over-temperature protection - Undervoltage lockout - · Over-current protection - Thermally optimized package: PG-DSO-8-27 #### **Applications** - LED driver for general lighting - · Retail, office and residential downlights - Street and tunnel lighting - LED ballasts | Product Name | Package | Marking | | | |--------------|-------------|---------|--|--| | ILD6070 | PG-DSO-8-27 | ILD6070 | | | **Product Brief** #### 2 Product Brief The ILD6070 is a hysteretic buck LED driver IC for driving high power LEDs in general lighting applications with average currents up to 0.7 A. The ILD6070 is suitable for LED applications with a wide range of supply voltages from 4.5 V to 60 V. A multifunctional PWM input signal allows dimming of the LEDs with an analog DC voltage or an external PWM signal. To minimize colorshifts of the LEDs an analog PWM voltage is converted to an internal 1.6 kHz PWM signal modulating the LED current. The ILD6070 incorporates an undervoltage lock-out that will shut down the IC when the minimum supply voltage threshold is exceeded. The over-current protection turns off the output stage once the output current is above the current threshold. An integrated over-temperature protection circuit will start to reduce the LED current by internal PWM modulation once the adjustable junction temperature threshold of the IC is exceeded. Realizing a thermal coupling between LED driver IC and LEDs this feature eliminates the need of external temperature senors as NTCs or PTCs. Thanks to the hysteretic concept the current control is extremely fast and always stable. A maximum contrast ratio of 3000:1 can be achieved depending of the dimensioning of the external components. The efficiency of the LED driver IC is remarkable high, reaching up to 98% of efficiency over a wide range. The output current accuracy from device to device and under all load conditions and over temperature is limited to a minimum, making ILD6070 the perfect fit for LED ballasts. Figure 1 Block Diagram ## ILD6070 60 V / 0.7 A High Efficiency Step-Down LED Driver IC **Product Brief** ### **Pin Definition** Table 1 Pin Definition and Function | Pin No. | Name | Pin
Type | Buffer
Type | Function | |---------|-------------|-------------|----------------|--| | 1 | VB | Input | _ | Bias control input voltage, recommended to connect to pin VS | | 2 | PWM | Input | _ | Dimming signal: • Analog dimming • PWM dimming | | 3 | GND | GND | _ | IC ground | | 4 | GND | GND | _ | IC ground | | 5 | Vswitch | Output | _ | Power switch output | | 6 | Vsense | Input | _ | LED current sense input | | 7 | VS | Input | _ | Supply voltage | | 8 | Tadj | Output | _ | Over-temperature adjustment | | EP | Exposed Pad | GND | _ | IC ground and heat spreader | **Maximum Ratings** ## 3 Maximum Ratings Table 2 Maximum Ratings | Parameter | Symbol | | Value | S | Unit | Note /
Test Condition | |---|--------------|----------------------|-------|---------|------|------------------------------| | | | Min. | Тур. | Max. | | | | Supply voltage | V_{S} | -0.3 | _ | 60 | V | _ | | Bias control voltage | V_{B} | -0.3 | _ | V_{S} | V | _ | | PWM voltage | V_{PWM} | -0.3 | _ | 5.5 | V | _ | | Tadj voltage | V_{Tadj} | -0.3 | _ | 3.5 | V | _ | | Sense voltage | V_{sense} | V _S - 0.3 | _ | V_{S} | V | _ | | Switch voltage | V_{switch} | -0.3 | _ | 60 | V | _ | | Average switch output current | I_{out} | _ | _ | 0.7 | А | _ | | Total power dissipation, $T_{\rm S} \le 118^{\circ}{\rm C}$ | P_{tot} | _ | _ | 1.6 | W | _ | | Junction temperature | T_{J} | -40 | _ | 150 | °C | _ | | Storage temperature range | T_{STG} | -65 | _ | 150 | °C | _ | | ESD capability at all pins ¹⁾ | V_{ESDHBM} | - | - | 2 | kV | HBM acc. to
JESD22 - A114 | ¹⁾ Two different classes of ESD protection elements are implemented within ILD6070: Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. ^{1.} ESD protection at pin VS will be triggered if the voltage at pin VS rises by more than 5 V with a slew rate of more than 5 V/µs. This condition is met during an ESD event, but might also occur if the LED driver gets hotplugged into a power supply and the VS blocking capacitor has a too small capacitance. ESD protection will remain triggered as long as the slewrate condition is met. If the ESD protection gets triggered while VS is supplied the IC might be damaged. 2. ESD protection at all other pins is triggered once the connected voltage signal exceeds a threshold higher than the maximum voltage rating specified for each pin. No preventions regarding slew rate control need to be taken for these pins. **Thermal Characteristics** ### 4 Thermal Characteristics Table 3 Maximum Thermal Resistance | Parameter | Symbol | Values | | | Unit | Note / | |--|------------|--------|------|------|------|----------------| | | | Min. | Тур. | Max. | | Test Condition | | Junction - soldering point ¹⁾ | R_{thJS} | _ | 20 | _ | K/W | _ | ¹⁾ For calculation of R_{thJA} please refer to application note AN077 (Thermal Resistance Calculation) Figure 2 Total Power Dissipation The major part of the IC power dissipation is caused by the switch resistance in conductive state. Therefore **Equation (1)** is a first estimation to calculate the total power dissipation of the IC $$P_{tot} = R_{ON} \cdot I_{out}^{2} \cdot D + I_{S} \cdot V_{S}$$ (1) #### D: Duty cycle of the output switch For a more precise analysis measure the soldering point temperature $T_{\rm S}$ of ILD6070 at GND pin and use **Figure 2** as a reference. #### 5 Electrical Characteristics #### 5.1 DC Characteristics All parameters at T_A = 25 °C, unless otherwise specified. Table 4 DC Characteristics | Parameter | Symbol | Values | | | Unit | Note / | | |---|--------------------------------|----------|------|---------|------|---|--| | | | Min. Typ | | Max. | | Test Condition | | | Operating supply voltage | V_{S} | 4.5 | _ | 60 | V | _ | | | Operating bias control voltage | V_{B} | 4.5 | _ | V_{S} | V | recommended to connect to $V_{\rm S}$ | | | Under Voltage Lock Out | $V_{S,UV,off}$ | 4.05 | 4.25 | 4.45 | V | IC deactivated ¹⁾ | | | | $V_{S,UV,on}$ | 4.15 | 4.35 | 4.50 | V | IC operative | | | Supply current consumption open load | <i>I</i> _{S,OL, 4.5V} | 1.55 | 2.1 | 2.65 | mA | V _S = 4.5 V | | | $V_{\rm S}$ = $V_{\rm sense}$, $I_{\rm LED}$ = 0 mA | I _{S,OL, 12V} | 1.60 | 2.2 | 2.70 | mA | V _S = 12 V | | | | $I_{S,OL,60V}$ | 1.60 | 2.24 | 2.80 | mA | V _S = 60 V | | | Supply voltage reset time | t _{S, reset} | 105 | 160 | 210 | μs | Reset time after $V_{\rm S}$ power up ²⁾ | | | Current of V _{sense} input | I_{sense} | 12 | 17 | 22 | μΑ | At any LED current | | | Current of V _B input | I _{B, 60V} | 35 | 55 | 70 | μΑ | V _B = 60 V | | | Output over current protection threshold | $I_{ m out,\;OCP}$ | 1.25 | 1.5 | 1.75 | Α | | | | Output over current protection delay time | t _{delay, OCP} | 160 | 220 | 300 | ns | turn off delay | | | Output over current protection time out | $t_{\rm timeout, OCP}$ | 30 | 57 | _ | μs | turn off duration ³⁾ | | | Over-temperature protection threshold range (typical), 10 % reduction | $T_{\mathrm{OTP, range}}$ | 75 | _ | 145 | °C | $R_{Tadj} = 35 \text{ k}\Omega \dots 0 \Omega$ | | | Over-temperature protection threshold open, 10 % reduction | $T_{OTP,open}$ | _ | 115 | _ | °C | R _{Tadj} ≥ 150 kΩ | | | Over-temperature protection threshold short, 10 % reduction | $T_{\mathrm{OTP, short}}$ | _ | 145 | - | °C | R _{Tadj} = 0 Ω | | | Over-temperature protection, turn off | $T_{\mathrm{OTP,off}}$ | _ | 160 | _ | °C | | | | Tadj pin current source to GND | I _{Tadj, short} | -75 | -60 | -45 | μΑ | $R_{Tadj} = 0 \Omega^{5)}$ | | ¹⁾ IC gets deactivated once the supply voltage drops below $V_{S, UV, off}$ and gets operative once supply voltage rises above $V_{S, UV, off}$. ILD6070 has an integrated over-temperature protection based upon the junction temperature on chip. The threshold of the over-temperature protection circuit is tunable by resistor R_{Tadj} connected from pin Tadj to GND. ²⁾ Reset timer starts after supply voltage exceeds the lower limit of the supply voltage. Output stage gets enabled once reset timer expires. Once the over current protection threshold has been exceeded the output switch gets disabled. It is enabled again once the time out expired. ⁴⁾ T_{OTP, range} specifies the typical temperature tuning range achievable at a 10 % reduction of LED current using resistors with 1 % accuracy. Temperatures specified refer to junction temperature on chip. Accuracy of the temperature sensor is typical ±5 K. Any resistor value R_{Tadj} ≥ 0 Ω can be selected but it might not influence OTP temperature if out of the ranges specified. ⁵⁾ Definition of current reference: Currents flowing out of the IC have a negative magnitude. R_{Tadj} resistor values within 0 to 35 k Ω define the over-temperature protection behavior as shown in **Figure 3**. R_{Tadj} values \geq 150 k Ω set the OTP threshold to $T_{OTP, open}$. The over-temperature protection is based upon modulation of the LED current with an internal PWM generator. Once the junction temperature exceeds the OTP threshold the PWM duty cycle as well as the average LED current will get reduced. Once junction temperature reaches $T_{OTP, off}$ the PWM duty cycle and LED current will be reduced to zero. Figure 3 Typical Output Current Duty Cycle of Over-Temperature Protection vs. T_J and R_{Tadj} # 5.2 Switching Characteristics All parameters at $T_{\rm A}$ = 25 °C, unless otherwise specified. Table 5 Switching Characteristics | Parameter | Symbol | | Value | s | Unit | Note / Test Condition | |--|------------------------|------|-------|------|------|---| | | | Min. | Тур. | Max. | | | | Switching frequency | $f_{\sf switch}$ | _ | _ | 1 | MHz | | | Mean current sense threshold voltage | $V_{ m sense}$ | - | 125 | _ | mV | $f_{\rm switch}$ = 100 kHz | | Sense threshold hysteresis | $V_{ m sensehys}$ | _ | ±22 | - | % | peak to average $V_{\rm S}$ = 12 V $f_{\rm switch}$ = 100 kHz | | Output current variation over supply voltage | I _{out, Vs} | _ | ±3 | _ | % | | | Output current variation over temperature | I _{out, Ts} | - | ±4 | _ | % | for temperatures below OTP threshold | | Output current variation over load | $I_{ m out,\ load}$ | _ | ±3 | _ | % | fixed $V_{\rm S}$ | | Switch on resistance | R _{ON, 25°C} | _ | 0.46 | 0.50 | Ω | $I_{\rm SW}$ = 0.5 A, $T_{\rm J}$ = 25 °C | | | R _{ON, 125°C} | _ | 0.67 | 0.74 | Ω | $I_{\rm SW}$ = 0.5 A, $T_{\rm J}$ = 125 °C | ## 5.3 Digital Control Signals All parameters at $T_{\rm A}$ = 25 °C, unless otherwise specified. Dimming of the LED current can be achieved by an analog or digital input voltage connected to pin PWM. A digital input signal will modulate the LED current according to **Table 6**. Table 6 Digital Control Parameter at Pin PWM¹⁾ | Parameter | Symbol | | Value | s | Unit | Note /
Test Condition | |------------------------------|--------------------------|------|-------|------|------|---| | | | Min. | Тур. | Max. | | | | PWM voltage logic high level | $V_{ m PWM,\ high}$ | 2.6 | _ | 5.5 | V | output stage
enabled | | PWM voltage logic low level | $V_{\mathrm{PWM,\ low}}$ | -0.3 | - | 0.5 | V | output stage
disabled | | PWM output current | $I_{\mathrm{CC,PWM}}$ | -23 | -18 | -12 | μA | V _{PWM} = 0 V | | PWM delay time | $t_{\sf d,PWM,on}$ | _ | 0.8 | _ | μs | $V_{\rm PWM}$ = rising to 2.5 V $V_{\rm switch}$ = falling to 1 V | | | $t_{\sf d,PWM,off}$ | _ | 0.6 | _ | μs | $V_{\rm PWM}$ = falling to 0.5 V $V_{\rm switch}$ = rising to 1 V | | PWM signal frequency | $f_{PWM, ext}$ | _ | _ | 25 | kHz | | ¹⁾ PWM pin has an internal pull-up circuit to high level if not connected externally on PCB Figure 4 PWM Input An analog PWM input voltage activates modulation of the LED current by the integrated PWM generator running at frequency $f_{\text{PWM, int}}$. Its duty cycle corresponds to analog PWM control voltage as shown in **Table 7** and **Figure 5**. ## 60 V / 0.7 A High Efficiency Step-Down LED Driver IC **Electrical Characteristics** Table 7 **Analog Control Parameter at Pin PWM** | Parameter | Symbol | | Values | Unit | Note / | | |---|------------------------|------|--------|------|--------|-----------------------| | | | Min. | Тур. | Max. | | Test Condition | | PWM input voltage for 0% duty cycle | V _{PWM, 0%} | _ | 0.61 | - | V | | | PWM input voltage for 50% duty cycle | V _{PWM, 50%} | _ | 1.52 | - | V | | | PWM input voltage for 100% duty cycle | V _{PWM, 100%} | _ | 2.43 | - | V | | | Sensitivity of PWM duty cycle vs. PWM input voltage | $D.C./V_{PWM}$ | _ | 55 | - | %/V | | | Integrated PWM generator frequency | $f_{ m PWM,int}$ | 1.2 | 1.6 | 2.1 | kHz | | Figure 5 Typical Integrated PWM Duty Cycle vs. PWM Control Voltage #### 5.4 **Switching Parameters** For all shown switching parameters ILD6070 has been measured on evaluation board ILD6070 at $T_{\rm A}$ = 25 °C. Used LEDs have a typical V_{fLED} of 3 V. Efficiency figure shows total efficiency of the application board including losses of external components as inductor or Schottky diode. See the application note for further details. ## Performance vs. supply voltage and number of LEDs: $R_{\rm sense}$ = 178 m Ω , L = 68 μ H, $V_{\rm fLED}$ = 3 V Performance vs. supply voltage and number of LEDs: $R_{\rm sense}$ = 353 m Ω , L = 150 μ H, $V_{\rm fLED}$ = 3 V ## LED current vs. soldering point temperature: $R_{\rm sense}$ = 353 m Ω , L = 150 μ H, $V_{\rm fLED}$ = 3 V, $R_{\rm Tadj}$ = 0 Ω . Note: Soldering point temperature was measured on application PCB close to chip exposed pad. See application note AN-EVAL-ILD6070 for board details. Over-temperature protection has been adjusted to max. threshold connecting Tadj pin to GND with $R_{Tadj} = 0 \Omega$. LED current vs. soldering point temperature: $R_{\rm sense}$ = 178 m Ω , L = 68 μ H, $V_{\rm fLED}$ = 3 V, $R_{\rm Tadj}$ = 0 Ω . **Application Circuit** # 6 Application Circuit Figure 6 Application Circuit A V_S blocking capacitor shall be placed close to pin 7 to enable a low ripple $V_{\rm sense}$ measurement and to avoid a false triggering of the V_S ESD protection element inside the IC. To enable the bias control of the IC it is most simple to connect pin 1 of the IC to supply voltage V_S . ### 6.1 Setting the average LED current The average output current for the LEDs is set by the external sense resistor R_{sense} . To calculate the value of this resistor a first approximation can be calculated using **Equation (2)**. V_{sense} is slightly dependent on the supply voltage V_S and the number of LEDs as shown in Chapter 5.4. $$R_{sense} = \frac{V_{sense}}{I_{LED}} \tag{2}$$ #### **Example calculation** $$V_S$$ = 12 V, 68 µH, V_{fLED} = 3 V, 3 LEDs in series \rightarrow V_{sense} = 125 mV I_{LED} = 0.7 A \rightarrow R_{sense} = 178 m Ω **Application Circuit** An easy way to achieve these resistor values is to connect standard resistors in parallel. #### 6.2 Inductor Selection Guideline The inductance of the inductor L, the supply voltage $V_{\rm S}$, the number of LEDs driven and their average LED current significantly influence the slew rate of the LED current in on and off condition of the LED driver IC output switch. Due to the hysteretic current control ILD6070 will toggle the output driver stage each time upper or lower current threshold are reached. To maintain best regulation capability of the LED driver IC it is reasonable to keep a margin to the minimum switch on and off time defined by internal propagation delay times. Disregard of this recommendation by choosing too small inductor values might result in an increased LED current ripple and loss of LED current regulation accuracy. Minimum 350 ns on and off time are recommended as a reasonable design target for the inductor selection. Below figures provide a guideline concerning minimum inductance value versus supply voltage and number of LEDs. It is assumed that the forward voltage of each LED is within a range of 2.5 V to 3.9 V over temperature and LED production tolerances. Minimum forward voltage (e.g. occuring at high LED temperatures) needs to be considered with respect to the minimum switch on-time while maximum forward voltage (e.g. occuring at low temperatures) needs to be considered with respect to the switch off-time. The saturation current of the chosen inductor has to be higher than the peak LED current and the rating of its continous current needs to exceed the average LED current. | 0.35 A | | Number of LEDs | | | | | | | | | | | | | | | |--------------------|-----|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--| | V _s [V] | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | 5 | 15 | | | | | | | | | | | | | | | | | 10 | 22 | 33 | | | | | | | | | | | | | | | | 15 | 47 | 33 | 47 | | | | | | | | | | | | | | | 20 | 68 | 47 | 47 | 47 | 68 | | | | | | | | | | | | | 25 | 68 | 68 | 68 | 47 | 68 | 68 | | | | | | | | | | | | 30 | 100 | 100 | 68 | 68 | 68 | 68 | 100 | | | | | | | | | | | 35 | 100 | 100 | 100 | 100 | 68 | 68 | 100 | 100 | | | | | | | | | | 40 | 150 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 150 | | | | | | | | 45 | 150 | 150 | 150 | 100 | 100 | 100 | 100 | 100 | 100 | 150 | 150 | | | | | | | 50 | 150 | 150 | 150 | 150 | 150 | 100 | 100 | 100 | 100 | 150 | 150 | 150 | | | | | | 55 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 100 | 100 | 150 | 150 | 150 | 150 | 220 | | | | 60 | 220 | 220 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 220 | 220 | | Figure 7 Minimum Inductance for 0.35 A Average LED Current | | 0.7 A | Number of LEDs | | | | | | | | | | | | | | | |---|---|----------------|-----|-----|-----|----|----|----|----|----|----|----|----|-----|-----|-----| | • | V _s [V] | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | 5 | 6.8 | | | | | | | | | | | | | | | | | 10 | 10 | 15 | | | | | | | | | | | | | | | | 15 | 22 | 15 | 22 | | | | | | | | | | | | | | | 20 | 33 | 22 | 22 | 33 | 33 | | | | | | | | | | | | | 25 | 33 | 33 | 33 | 33 | 33 | 47 | | | | | | | | | | | | 30 | 47 | 47 | 33 | 33 | 33 | 47 | 47 | | | | | | | | | | | 35 | 47 | 47 | 47 | 47 | 33 | 47 | 47 | 47 | | | | | | | | | | 40 | 68 | 68 | 47 | 47 | 47 | 47 | 47 | 47 | 68 | 68 | | | | | | | | 45 | 68 | 68 | 68 | 68 | 47 | 47 | 47 | 47 | 68 | 68 | 68 | | | | | | | 50 | 68 | 68 | 68 | 68 | 68 | 68 | 47 | 47 | 68 | 68 | 68 | 68 | | | | | | 55 | 100 | 100 | 68 | 68 | 68 | 68 | 68 | 68 | 68 | 68 | 68 | 68 | 100 | | | | | 60 | 100 | 100 | 100 | 100 | 68 | 68 | 68 | 68 | 68 | 68 | 68 | 68 | 100 | 100 | 100 | | | Inductance in μH; 2.5 V ≤ V _{fLED} ≤ 3.9 V | | | | | | | | | | | | | | | | Figure 8 Minimum Inductance for 0.7 A Average LED Current **Package Information** # 7 Package Information Figure 9 Package outline PG-DSO-8-27 (dimensions in mm) Figure 10 Recommended PCB Footprint for Reflow Soldering (dimensions in mm) Figure 11 Tape Loading (dimensions in mm) w w w .in fineon.com