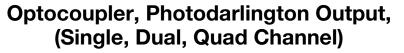
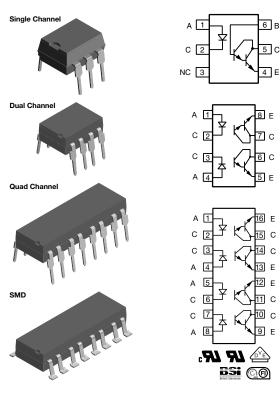
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!




Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Vishay Semiconductors

FEATURES

- 125 mA load current rating
- Fast rise time, 10 µs
- Fast fall time, 35 µs
- · Single, dual and quad channel
- Solid state reliability
- Standard DIP packages
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

AGENCY APPROVALS

- UL1577, file no. E52744 system code H, double protection
- cUL tested to CSA 22.2 bulletin 5A
- DIN EN 60747-5-2 (VDE 0884) / DIN EN 60747-5-5 pending available with option 1
- BSI IEC 60950; IEC 60065
- FIMKO

DESCRIPTION

The IL30 single, ILD55 dual, and ILQ30, ILQ31, ILQ55 quad are optically coupled isolators with gallium arsenide infrared emitters and silicon photodarlington sensors. Switching can be achieved while maintaining a high degree of isolation between driving and load circuits, with no crosstalk between channels. These optocouplers can be used to replace reed and mercury relays with advantages of long life, high speed switching and elimination of magnetic fields.

The ILD55 is designed to reduce board space requirements in high density applications.

ORDERING INFORMATIO	N						
I L x # PART NUMBER x = D (Dual) or Q (Qua		X 0 0 PACKAGE OPTION		DIP 7.62 mm Option 7 Option 9 mm			
AGENCY CERTIFIED/PACKAGE	SINGLE CHANNEL	DUAL CHANNEL	L QUAD CHANNEL				
AGENCT CENTIFIED/FACKAGE	CTR						
UL, cUL, BSI, FIMKO	≥ 100	≥ 100	≥ 100	≥ 200			
DIP-6	IL30	-	-	-			
DIP-8	-	ILD55	-	-			
SMD-8, option 7	-	ILD55-X007	-	-			
SMD-8, option 9	-	ILD55-X009T ⁽¹⁾	-	-			
DIP-16	-	-	ILQ30, ILQ55	ILQ31			
SMD-16, option 7	-	-	ILQ55-X007	-			
SMD-16, option 9	-	-	ILQ30-X009, ILQ55-X009T ⁽¹⁾	-			
VDE, UL, cUL, BSI, FIMKO	≥ 100	≥ 100	≥ 100	≥ 200			
	2100						

Notes

Additional options may be possible, please contact sales office.

⁽¹⁾ Also available in tubes, do not put "T" on the end.

Rev. 1.8, 28-Jul-14

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

RoHS

COMPLIANT

Vishay Semiconductors

PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT
INPUT					
Peak reverse voltage			V _{RM}	3	V
Forward continuous current			I _F	60	mA
Power dissipation			P _{diss}	100	mW
Derate linearly from 25 °C				1.33	mW/°C
OUTPUT		•			
		IL30	BV _{CEO}	30	V
Callester en itter breakderer reltere		ILQ30	BV _{CEO}	30	V
Collector emitter breakdown voltage		ILD55	BV _{CEO}	55	V
		ILQ55	BV _{CEO}	55	V
Collector (load) current			Ι _C	125	mA
Power dissipation			P _{diss}	150	mW
Derate linearly from 25 °C				2	mW/°C
COUPLER		•			
		IL30	P _{tot}	250	mW
		ILD55	P _{tot}	400	mW
Total package power dissipation		ILQ30	P _{tot}	500	mW
		ILQ31	P _{tot}	500	mW
		ILQ55	P _{tot}	500	mW
		IL30		3.3	mW/°C
		ILD55		3.3	mW/°C
Derate linearly from 25 °C		ILQ30		6.67	mW/°C
		ILQ31		6.67	mW/°C
		ILQ55		6.67	mW/°C
Isolation test voltage			V _{ISO}	5300	V _{RMS}
Creepage distance				≥7	mm
Clearance distance				≥7	mm
Comparative tracking index			CTI	175	
Storage temperature			T _{stg}	-55 to +125	°C
COUPLER					
Operating temperature			T _{amb}	-55 to +100	°C
Lead soldering time at 260 °C				10	S

Note

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability.

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX.								
INPUT						<u>.</u>		
Forward voltage	I _F = 20 mA	V _F		1.25	1.5	V		
Reverse current	V _R = 3 V	I _R		0.1	10	μA		
Capacitance	$V_R = 0 V$	Co		25		pF		
OUTPUT								
Collector emitter breakdown voltage	I _C = 100 μA	BV _{CEO}	30/55			V		
Collector emitter leakage current	$V_{CE} = 10 \text{ V}, \text{ I}_{F} = 0 \text{ A}$	I _{CEO}		1	100	nA		
Collector emitter capacitance	V _{CE} = 10 V, f = 1 MHz	C _{CE}		3.4		pF		
COUPLER								
Collector emitter saturation voltage	$I_{C} = 50 \text{ mA}, I_{F} = 50 \text{ mA}$	V _{CEsat}		0.9	1	V		
Isolation test voltage			5300			V _{RMS}		
Isolation resistance		R _{IO}		10 ¹²		Ω		
Capacitance (input to output)		C _{IO}		0.5		pF		

Note

 Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

Rev.	1.	8,	28-	Ju	1-1	4
------	----	----	-----	----	-----	---

2

Vishay Semiconductors

CURRENT TRANSFER RATIO (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Current transfer ratio		IL30	CTR	100	400		%	
		ILD55	CTR	100	400		%	
	$I_{F} = 10 \text{ mA}, V_{CE} = 5 \text{ V}$	ILQ30	CTR	100	400		%	
		ILQ55	CTR	100	400		%	
		ILQ31	CTR	200	400		%	

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION SYMBOL MIN. TYP. MAX. UI							
Rise time	V_{CC} = 13.5 V, I_F = 50 mA, R_L = 100 Ω	t _r		10		μs		
Fall time	V_{CC} = 13.5 V, I_F = 50 mA, R_L = 100 Ω	t _f		35		μs		

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

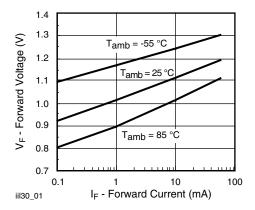


Fig. 1 - Forward Voltage vs. Forward Current

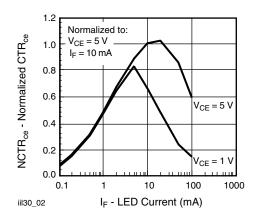


Fig. 2 - Normalized Non-Saturated and Saturated CTR_{CE} vs. LED Current

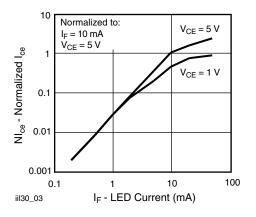


Fig. 3 - Normalized Non-Saturated and Saturated Collector Emitter Current vs. LED Current

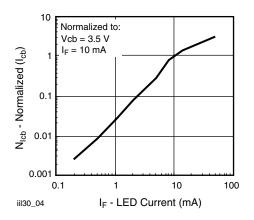


Fig. 4 - Normalized Collector Base Photocurrent vs. LED Current

Vishay Semiconductors

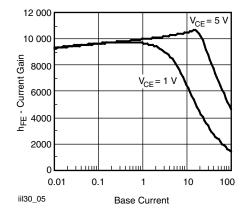


Fig. 5 - h_{FE} Current Gain vs. Base Current

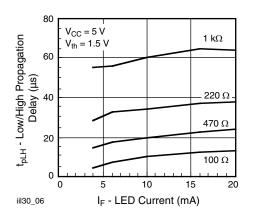
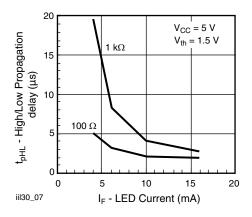




Fig. 6 - Low to High Propagation Delay vs. Collector Load Resistance and LED Current

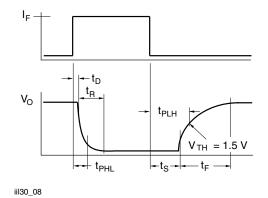


Fig. 8 - Switching Waveform

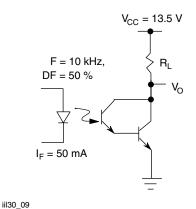
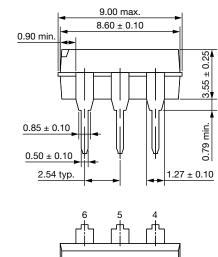
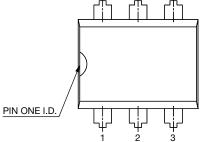
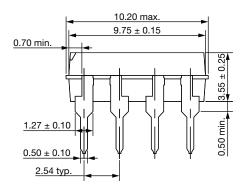


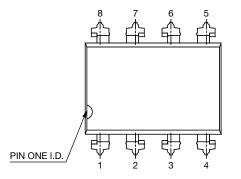
Fig. 9 - Switching Schematic

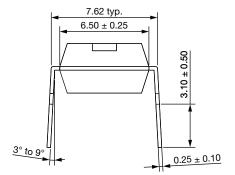

4

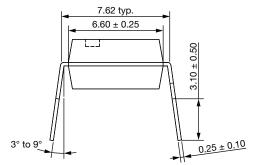


Vishay Semiconductors

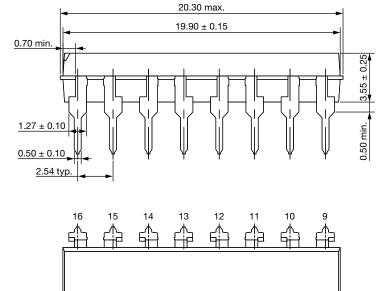

PACKAGE DIMENSIONS in millimeters

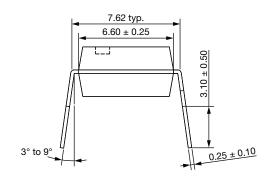

DIP-6

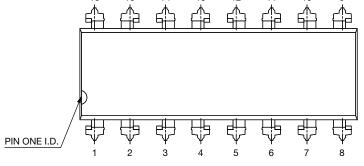




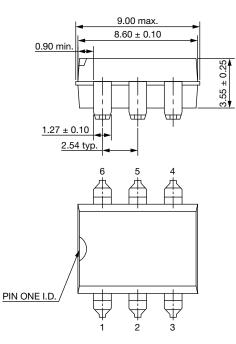
DIP-8

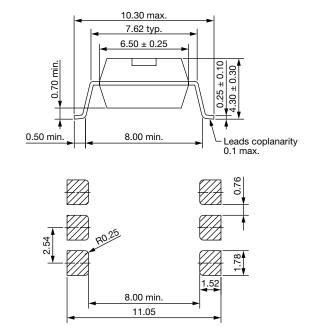

Rev. 1.8, 28-Jul-14


5

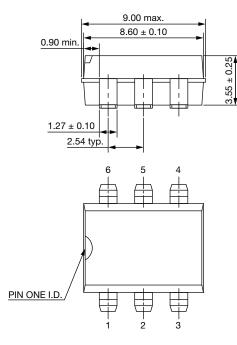


Vishay Semiconductors

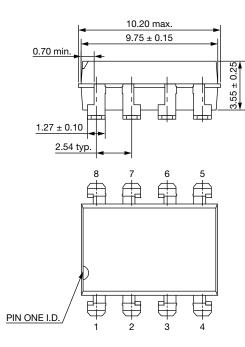

DIP-16

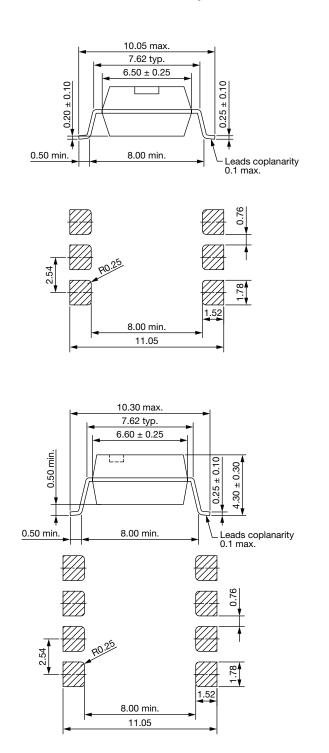


SMD-6, Option 7


Rev. 1.8, 28-Jul-14

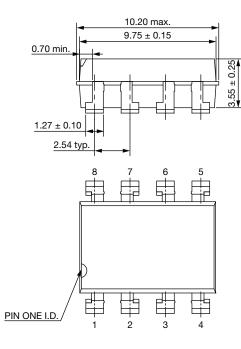
6

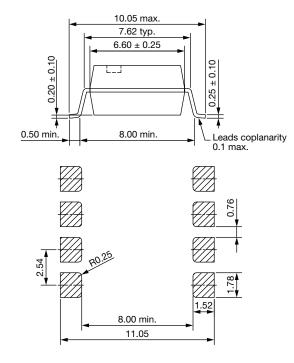


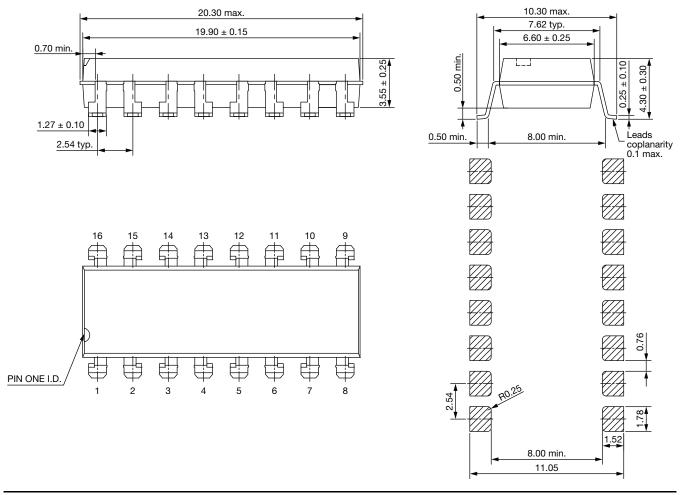

Vishay Semiconductors

SMD-6, Option 9

SMD-8, Option 7



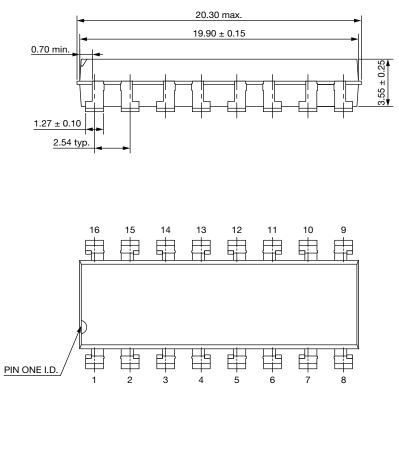



Vishay Semiconductors

SMD-8, Option 9

SMD-16, Option 7

Rev. 1.8, 28-Jul-14


8 For technical questions, contact: <u>optocoupleranswers@vishay.com</u> Document Number: 83621

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

SMD-16, Option 9

PACKAGE MARKING (Example)

Notes

- Only option 1 and 7 reflected in the package marking
- The VDE logo is only marked on option 1 parts
- Tape and reel suffix (T) is not part of the package marking

9

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.