imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Quick Start Guide

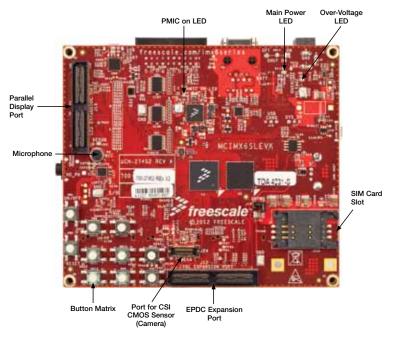
•

i.MX 6SoloLite Evaluation Kit

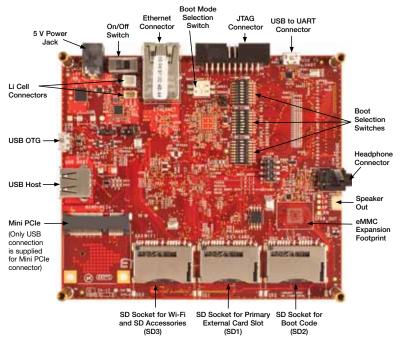
About the i.MX 6SoloLite Evaluation Kit

The i.MX 6SoloLite evaluation kit (EVK) offers a solid platform to evaluate the i.MX 6 series single-core processor built on ARM[®] Cortex[™]-A9 technology as well as a reference for future designs. Key features of this platform include:

- i.MX6SL single ARM Cortex-A9 core operating up to 1 GHz
- 1 GB LPDDR2 (400 MHz)
- SPI NOR
- SD socket for external devices
- SD socket for boot code
- SD socket for Wi-Fi® and accessories
- eMMC expansion footprint
- Audio codec


- · EPDC expansion port
- · Parallel display port
- Port for CSI CMOS sensor (camera)
- · SIM card slot
- Button matrix
- Ethernet
- · Lithium battery charger
- USB host, USB OTG and USB to UART ports

Getting Started


The i.MX 6SoloLite EVK includes the following items:

- Board: MCIMX6SLEVK
- Cables: Micro USB-B-2-USB-Type A male, V2.0
- Power supply: 100/240 V input, 5 V, 2.4 A output W/AC adaptor
- Documentation: Quick start guide (this document)
- SD cards: Programmed Android[™]

Get to Know the i.MX 6SoloLite EVK (top)

Get to Know the i.MX 6SoloLite EVK (bottom)

Setting up the Board

Insert SD Card

Insert the supplied SD card into the SD2 card slot.

Set Up Boot Switches

By default, boot switches are configured to boot from SD2. If any other boot source is desired, boot switches have to be configured according to Table 1.

Connect USB to UART Cable

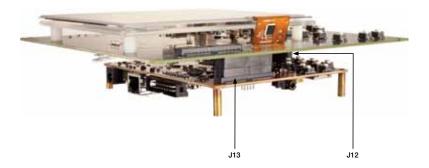
Connect from USB to UART port (J26) using a micro USB cable to PC. Once the PC recognizes the virtual USB to UART device, it can be seen it in your PC Device Manager list. Serial port configuration: 115.2 Kbaud, 8 data bits, 1 stop bit, no parity.

Note: The PC needs a driver to enable a virtual COM port through the PC USB port.

Visit **ftdichip.com** to download the correct driver.

4

Connect EPDC or Parallel Display


Connect by means of the IMXEBOOKDC3-E board, which has to be connected to J12 and J13. For more information about this board, please visit **freescale.com**.

5 Connect Power Supply

Connect 5 V power supply into power jack J6 and set SW14 to the On position (see table 2).

The i.MX 6SoloLite EVK is compatible with the following daughter cards through the LCD extension slot:

- MCIMX28LCD—LCD daughter card*
- MCIMXHDMICAR—HDMI daughter card
- IMXEBOOKDC3-EPD daughter card

* EVK does not natively support the resistive touch screen on the LCD cards. It does support touch on the EPD cards. The Android BSP is provided on two different SD cards, depending upon the display daughter card used.

LCD/HDMI SD Card for Booting Android

The default boot mode configures the system to display the UI on the MCIMX28LCD (sold separately).

To change the default configuration and enable the MCIMXHDMICAR daughter card (sold separately), hit any key to stop u-boot from proceeding. Once prompt is visible, the u-boot can be configured as follows:

For LCD boot up, type the following commands (as one line): setenv bootargs console=ttymxc0,115200 init=/init androidboot.console=ttymxc0 panel=lcd saveenv reset

```
For HDMI boot up, type the following commands (as one line):
setenv bootargs console=ttymxc0,115200 init=/init
androidboot.console=ttymxc0 panel=hdmi
saveenv
reset
```

EPDC SD Card for Booting Android

The default settings should be used and no change is needed.

Boot Options and Switch Configuration

Table 1: Boot Options

	S1_2	S1_1
	BOOT_MODE1	BOOT_MODE0
Boot from fuses	0	0
Serial downloader	0	1
Internal boot	1	0
Reserved	1	1

Table 2: SW3 Configuration

	SW3_8	SW3_7	SW3_6	SW3_5	SW3_4	SW3_3	SW3_2	SW3_1
	BT_CFG1_0	BT_CFG1_1	BT_CFG1_2	BT_CFG1_3	BT_CFG1_4	BT_CFG1_5	BT_CFG1_6	BT_CFG1_7
SD1 ^D	•	**	*	•	*	0	1	0
SD2	•	**	*	•	*	0	1	0
SD3	•	**	*	•	*	0	1	0
SD4	•	**	*	•	*	0	1	0
eMMC	х	х	*	•	*	1	1	0
SPI NOR	х	х	х	х	1	1	0	0

X None specified

Default configuration

* Switch needs to be configured for high or low depending on the application needs. Please check reference manual for boot configuration options

1 = power cycle on power-up via SDa_RST_B (SD3_RST). 0 = no power cycle

Boot Options and Switch Configuration cont'd

	SW4_8	SW4_7	SW4_6	SW4_5	SW4_4	SW4_3	SW4_2	SW4_1
	BT_CFG2_0	BT_CFG2_1	BT_CFG2_2	BT_CFG2_3	BT_CFG2_4	BT_CFG2_5	BT_CFG2_6	BT_CFG2_7
SD1	*	Х	Х	0	0	1	*	*
SD2 ^D	*	Х	Х	1	0	1	*	*
SD3	*	Х	Х	0	1	1	*	*
SD4	*	Х	Х	1	1	1	*	*
eMMC	*	*	*	1	0	0	1	1
SPI NOR	Х	Х	X	Х	Х	Х	Х	Х

Table 3: SW4 Configuration

Table 4: SW5 Configuration

	SW5_8	SW5_7	SW5_6	SW5_5	SW5_4	SW5_3	SW5_2	SW5_1
	BT_CFG4_0	BT_CFG4_1	BT_CFG4_2	BT_CFG4_3	BT_CFG4_4	BT_CFG4_5	BT_CFG4_6	BT_CFG4_7
SD1	Х	Х	Х	Х	Х	Х	Х	Х
SD2 ^D	Х	Х	Х	Х	Х	Х	Х	Х
SD3	Х	Х	Х	Х	Х	Х	Х	Х
SD4	Х	Х	Х	Х	Х	Х	Х	Х
eMMC	Х	Х	Х	Х	Х	Х	Х	Х
SPI NOR	0	0	0	1	0	0	Х	Х

- X None specified
- Default configuration
- * Switch needs to be configured for high or low depending on the application needs. Please check reference manual for boot configuration options
- ** 1 = power cycle on power-up via SDa_RST_B (SD3_RST). 0 = no power cycle

Jumper and Solder Short Configuration

Table 5: Jumper and Solder Short Configuration

Reference	Shunt Installation	Function
	1-2	Use pins 1 and 2 to connect an external charger
J16	2-3	Shunt 2–3 to experiment with USB charging
	Open ^D	No charger
J17	1-2 ^D	5 V rail supplied by PMIC (600 mA limited)
J17	2-3	5 V rail supplied from wall adapter
110	1-2	Mini-PCIe connector J8 supply voltage connected
J18	Open ^D	Mini-PCle connector J8 supply voltage unconnected
	1-2 ^D	MX_USB_HOST_D_P connected to USB type A connector
SH12	2-3	J10 - USB_HOST_D_P
Γ		MX_USB_HOST_D_P connected to PCIE_USB_HOST_D_P
	1-2 ^D	MX_USB_HOST_D_N connected to USB type A connector
SH13	2-3	J10 - USB_HOST_D_N
		MX_USB_HOST_D_N connected to PCIE_USB_HOST_D_N
SW14	1-2	0
	2-3	

Default configuration

Tips and Precautions

The i.MX 6SoloLite includes an over-voltage protection circuit that will disconnect the power supply from the system by opening transistor Q1 in case the supply voltage exceeds 5.5 V. The user must take into account this is the maximum voltage that can be plugged into J6.

Further Documentation

- MX6SL EVK schematics
- MX6SL EVK BOM MX6SL
- EVK gerber files
- MX6SL EVK reference manual

Complete documentation is available at freescale.com/6SLEVK.

Quick Start Guide

Get Started

Download the installation software and documentation under "Jump Start Your Design" at **freescale.com/6SLEVK**.

Support

Visit the i.MX community at **imxcommunity.org**.

Warranty

Visit **freescale.com/warranty** for complete warranty information.

For more information, visit

freescale.com/iMX6series

Freescale and the Freescale logo are trademarks of Freescale semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. ARM is a registered trademark of ARM Limited. ARM Cortex-A9 is a trademark of ARM Limited. All other product or service names are the property of their respective owners. © 2012 Freescale Semiconductor, Inc.

Doc Number: IMX6SLEVKQSG REV 0 Agile Number: 926-27452 REV A